首页|基于改进YOLOv8n的轻量化未爆弹检测方法

基于改进YOLOv8n的轻量化未爆弹检测方法

扫码查看
未爆弹因其隐蔽性强、位置分布复杂、易于意外引爆等特点,对公共安全构成严重威胁.目前深度学习在目标检测方面取得重大进展,但由于未爆弹数据集收集制作难、应用范围有限等客观因素,加之深度模型体积大,导致深度模型对未爆弹检测精度不高且不能轻量化部署于无人排爆装备.对此提出了一种基于改进YOLOv8n的轻量化未爆弹检测方法.通过在骨干网络中引入基于跨空间学习的高效多尺度注意力模块EMA用于增强特征提取,同时运用Network Slimming模型剪枝策略以损失一定精度换取模型体积、运算量的大幅降低和帧率的大幅提高.实验表明,使用所提方法改进后的模型与原模型相比,在精度上提升3.4%,模型大小减小31.5%,运算量减小33.8%,FPS帧率提高29.2%.
Lightweight unexploded ordnance detection method based on improved YOLOv8n
Unexploded ordnance poses a serious threat to public safety due to its stealthiness,complex distribution,and the ease of accidental detonation.Although significant progress has been made in the field of object detection using deep learning,challenges such as the difficulty in collecting and creating datasets for unexploded ordnance,limited application scope,and the large size of deep models have resulted in low detection accuracy and an inability to deploy lightweight versions on unmanned explosive ordnance disposal equipment.To address these issues,this paper proposes a lightweight unexploded ordnance detection method based on improved YOLOv8n.Firstly,an efficient multi-scale attention module EMA,based on cross-space learning,is introduced into the backbone network to enhance feature extraction capabilities.Secondly,the Network Slimming model pruning strategy is employed to significantly reduce the model size and computational requirements while sacrificing some accuracy,leading to a substantial increase in frame rate.Experimental results demonstrate that the improved model,using the proposed method,achieves a 3.4%increase in accuracy,a 31.5%reduction in model size,a 33.8%decrease in computational volume,and a 29.2%improvement in FPS frame rate compared to the original model.

object detectionunexploded ordnanceYOLOv8nattention mechanismchannel pruning

黄启东、张彬彬、夏良

展开 >

陆军炮兵防空兵学院,合肥 230000

目标检测 未爆弹 YOLOv8n 注意力机制 通道剪枝

2024

兵器装备工程学报
重庆市(四川省)兵工学会 重庆理工大学

兵器装备工程学报

CSTPCD北大核心
影响因子:0.478
ISSN:2096-2304
年,卷(期):2024.45(10)