首页|基于BP-SA混合学习策略优化的舰载消磁系统在役考核评估方法

基于BP-SA混合学习策略优化的舰载消磁系统在役考核评估方法

扫码查看
装备在役考核是验证装备服役后的作战与保障效能,促进装备迭代升级的重要手段.针对舰载消磁系统在役考核工作特点和常规考核评估方法的不足,从作战效能、适用性、可靠性、维修性以及测试性等5个方面建立了舰载消磁系统在役考核指标体系.在传统BP神经网络的基础上,引入模拟退火策略随机寻找更优解,提高了神经网络的收敛性和稳定性.评估模型经过70组舰载消磁系统数据样本的训练、测试和验证,最终得到剩余预测残差RPD为9.309 3的实验结果,表明了该模型不仅克服了传统BP神经网络算法局部极小、拟合效果差等问题,且对于舰载消磁系统在役考核结果具有很好的预测与评估能力.
In-service evaluation method of naval degaussing system optimized by BP-SA hybrid learning strategy
Equipment in-service evaluation is an important means to verify the operational and support effectiveness after the equipment is commissioned,and to promote the iterative upgrading of the equipment.Considering the characteristics of naval degaussing system in service evaluation and the shortcomings of conventional evaluation methods,the in-service evaluation index system of naval degaussing system is established from five aspects:combat effectiveness,applicability,reliability,maintainability,and testability.Based on the conventional back-propagation neural network,the simulated annealing learning strategy is introduced to improve the convergence and stability of the neural network,which is used to randomly find the optimal solution.After training,testing and validating 70 data samples,the evaluation model finally obtained the experimental result of 9.309 3 residual prediction residual,which indicates that the model not only overcomes the problems of the traditional BP neural network algorithm such as local minimization and poor fitting effect,but also has a good ability to predict and evaluate the in-service evaluation results of shipboard degaussing system.

shipboard degaussing systemin-service evaluationBP neural networksimulated annealinghybrid learning strategy

甄子清、黄栋、冯浩明、王韵实

展开 >

海军工程大学管理工程与装备经济系,武汉 430033

中国人民解放军第91315部队,辽宁大连 116041

舰载消磁系统 在役考核 BP神经网络 模拟退火 混合学习策略

2024

兵器装备工程学报
重庆市(四川省)兵工学会 重庆理工大学

兵器装备工程学报

CSTPCD北大核心
影响因子:0.478
ISSN:2096-2304
年,卷(期):2024.45(10)