首页|机器学习在空空导弹攻击区解算中的应用及展望

机器学习在空空导弹攻击区解算中的应用及展望

扫码查看
针对机器学习在空空导弹攻击区快速解算上的应用,对国内外的攻击区解算方法进行概述总结,重点介绍基于深度学习攻击区解算法的研究现状,对比分析各种空空导弹攻击区解算方法的特点,提出结合强化学习的空空导弹攻击区解算方法;运用对比与理论分析相结合的方法,考虑实际工程水平,基于深度学习攻击区解算方法,提出了一种基于深度强化学习的空空导弹攻击区快速解算优化策略;与传统空空导弹攻击区解算方法相比BP神经网络拟合法解算速度快、解算精度高,但无法自主决策参数寻优,需要结合强化学习的自主决策能力进行优化;优化后的基于深度Q网络(DQN)和基于深度确定性策略梯度(DDPG)算法的攻击区解算策略能够分别对离散型和连续型网络参数实现自主决策优化;综合来看,利用DQN算法对迭代次数和利用DDPG算法对攻击参数的优化可以提高系统对复杂战场环境和不确定性因素的适应能力,从而改善导弹攻击的精度和有效性.
Application and prospect of machine learning in air-to-air missile attack zone calculation
Fast calculation of missile attack zone has always been a hot issue in engineering.With the development of machine learning,using neural network in deep learning to solve missile attack zone has become a hot topic.In order to deeply understand the application of machine learning in the calculation of missile attack zone,the calculation methods of attack zone at home and abroad are summarized.The research status of neural network solution algorithm based on deep learning is mainly introduced.The characteristics of various solution methods are compared and analyzed.On this basis,the application of machine learning in the calculation of attack zone in the future is prospected in combination with reinforcement learning.Using the method of comparison and theoretical analysis,considering the actual engineering level,an optimization strategy based on deep reinforcement learning is proposed,which provides theoretical guidance for the application of machine learning in the calculation of air-to-air missile attack zone.

air-to-air missileattack zonemachine learningdeep learningneural networkreinforcement learningdeep reinforcement learning

弋滨、周航、魏蓝、夏群利

展开 >

北京理工大学宇航学院,北京 100081

中国工程物理研究院总体工程研究所,四川绵阳 621999

中国兵器科学研究院,北京 100089

空空导弹 攻击区 机器学习 深度学习 神经网络 强化学习 深度强化学习

2024

兵器装备工程学报
重庆市(四川省)兵工学会 重庆理工大学

兵器装备工程学报

CSTPCD北大核心
影响因子:0.478
ISSN:2096-2304
年,卷(期):2024.45(12)