首页|基于LESO-LTV-MPC的起竖液压系统控制

基于LESO-LTV-MPC的起竖液压系统控制

扫码查看
针对常见控制策略在大型液压设备控制方面存在控制精度低与算法太复杂的问题,提出了基于线性扩张状态观测器(linear extended state observer,LESO)的线性时变模型预测控制(linear time-varying model predictive control,LTV-MPC)策略.通过起竖液压系统状态空间方程,设计了 LESO实时估计系统当前状态;通过LTV-MPC输出比例阀电压信号的最优解.通过仿真与试验,验证所提方法的有效性.结果表明:无干扰时,相较于其他控制策略,LESO-LTV-MPC控制误差为0.014%,具有较高的控制精度;施加大干扰时,LESO-LTV-MPC控制误差为0.223%,具有较强的鲁棒性.因此,该控制策略能够有效提升起竖液压系统的性能.
Control of erection hydraulic system based on LESO-LTV-MPC
In view of the problems of low control accuracy and complicated algorithms of common control methods in large hydraulic equipment control,a Linear Time-Varying Model Predictive Control(LTV-MPC)method based on Linear Extended State Observer(LESO)is proposed.The LESO is designed to estimate the current state of the system in real-time by the state space equation of the erection hydraulic system;the optimal solution of the proportional valve voltage signal is output by the LTV-MPC.The effectiveness of the proposed method is verified through simulation and experimentation.The results show that when there is no disturbance,compared with other control strategies,the control error ratio of LESO-LTV-MPC is 0.014%,which has high control accuracy;when large disturbances are imposed,the control error ratio of LESO-LTV-MPC is 0.223%,which has strong robustness.Therefore,this control strategy can effectively improve the performance of the erection hydraulic system.

erection hydraulic systemstate estimationlinear extended state observermodel predictive controlparameter identificationrecursive least squaresdisplacement tracking

马栋、高钦和、刘志浩、高蕾

展开 >

火箭军工程大学,西安 710025

起竖液压 状态估计 线性扩张状态观测器 模型预测控制 参数辨识 递推最小二乘 位移跟踪

2024

兵器装备工程学报
重庆市(四川省)兵工学会 重庆理工大学

兵器装备工程学报

CSTPCD北大核心
影响因子:0.478
ISSN:2096-2304
年,卷(期):2024.45(12)