首页|基于主成分分析法及RBF神经网络耦合模型的水华预测研究

基于主成分分析法及RBF神经网络耦合模型的水华预测研究

扫码查看
针对城市景观水体水华产生过程存在复杂性、时变性、不确定性等特点,为解决水华预测中准确度不高、预测模型过于复杂等问题,将主成分分析降维能力与人工神经网络自学习能力相结合,提出PCA-RBF神经网络水华预测模型。主成分分析的结果将作为RBF神经网络的输入矩阵,并可对城市景观水体的主要污染物进行分析。结果显示,PCA-RBF神经网络对水质的预测精度为0。763,平均相对误差为21。83%,对水华的预测精度为92。3%,远高于一般的RBF神经网络模型。PCA-RBF网络的水华预测模型泛化能力强,网络预测精度较高,为水华的预测、预警提供了有效的手段,对城市景观水体的水华防治具有指导意义。
Bloom Predication and Analysis Based on Principal Component Analysis and RBF Neural Network Model
Formation process of water bloom in urban landscape waters is complicated,time-varied and uncertain.To overcome shortages of bloom predication,such as low accuracy and excessively complicated prediction model,the dimension reduction ability of principal component analysis was combined with the self-learning ability of artificial neural network,and the PCA-RBF neural network model for bloom predication was proposed in this paper.The principal analysis results were used as the input matrixof RBF neural network and the main pollutants of landscape waters in urban areas were analysed.The results showed that the water quality prediction accuracy of the PCA-RBF neural network was 0.763,with an average relative error of 21.83%and the bloom prediction accuracy of 92.3%,which were much greater than those of a general RBF neural network model.The PCA-RBF neural network has strong generalization ability of bloom prediction model and high prediction accuracy,providing effective means for the prediction and early warning of water bloom and having a good guiding significance to the prevention and control of water bloom in urban landscape water.

Bloom predictionprincipal component analysisneural networklandscape water

谢如意、李伦、冯振鹏、艾庆华

展开 >

中冶南方城市建设工程技术有限公司,武汉 430077

中国中冶海绵城市技术研究院,武汉 430077

水华预测 主成分分析 人工神经网络 景观水体

2024

四川环境
四川省环境保护科学研究院 四川省环境科学学会

四川环境

CSTPCD
影响因子:0.444
ISSN:1001-3644
年,卷(期):2024.43(5)