首页|基于深度强化学习的空气源热泵供热系统温度控制策略

基于深度强化学习的空气源热泵供热系统温度控制策略

扫码查看
空气源热泵(air source heat pump,ASHP)负荷具备良好的可调节特性,其建模的准确性和控制策略的设计是充分发挥其调节潜力的关键.文中考虑空气源热泵供热系统的储热特性,提出了基于深度强化学习(reinforcement learning,RL)的空气源热泵供热系统温度控制策略.首先建立了基于参数辨识的空气源热泵供热系统数学模型.其次建立了空气源热泵供热系统马尔可夫过程决策模型,并基于Q-Learning算法设计了供热系统深度强化学习控制策略.基于实际运行数据的仿真结果表明,本文提出的考虑供热延迟的供热系统数学模型能够准确预测供回水温度及室内温度变化情况,且所提出的基于深度强化学习的温度控制策略能够在维持用户室内温度在设定值的前提下,有效降低用电成本.
Temperature Control Strategy for Air Source Heat Pump Heating System Based on Deep Reinforcement Learning
The air source heat pumps(ASHP)exhibits good adjustability,and the accuracy of its modeling and the design of control strategies are key to fully exploiting its regulation potential.This paper considers the thermal storage characteristics of air source heat pump heating systems and proposes a temperature control strategy based on deep reinforcement learning(RL)for ASHP heating systems.First,a mathematical model of the ASHP heating system is established based on parameter identification.Then,a Markov decision process(MDP)model for the ASHP heating system is developed,and a temperature control strategy based on deep reinforcement learning is designed using the Q-learning algorithm.Simulation results based on real operating data demonstrate that the proposed heating system mathematical model,which accounts for heating delays,can accurately predict the variations in supply and return water temperatures as well as indoor temperatures.Furthermore,the proposed deep reinforcement learning-based temperature control strategy effectively reduces electricity costs while maintaining the indoor temperature at the set value.

air source heat pumptime of use pricingreinforcement learningwater temperature control strategy

刘伟、高嵩、宋宗勋、许晓康、刘萌

展开 >

国网山东省电力公司威海供电公司,山东 威海 264204

国网山东省电力公司电力科学研究院,山东 济南 250003

空气源热泵 分时电价 强化学习 水温控制策略

2025

山东电力技术
山东电机工程学会 山东电力研究院

山东电力技术

影响因子:0.289
ISSN:1007-9904
年,卷(期):2025.52(1)