首页|不含K+1,3图的强边染色

不含K+1,3图的强边染色

Strong edge-coloring of graphs without K+1,3

扫码查看
一个图G的强边染色是将颜色分配给所有的边,使得每个颜色类的导出子图是一个匹配.在图G的强边染色中所需的最小颜色数称为图G的强边色数,边e=uv的度记为d(e)=d(u)+d(v),图G的边度记为d(G)=min{d(e)|e∈E(G)}.证明最大度为△且图的边度大于顶点数的不含K+1,3图的强边色数至多是△2-△+1.
The strong edge-coloring of a graph G is to assign colors to all edges,so that the derived subgraphs of each color class are a matching.The minimum number of colors required in the strong edge-coloring of a graph G is called the strong chromatic index of the graph G,the degree of edge e=uv is recorded as d(e)=d(u)+d(v),the edge degree of G is recorded as d(G)=min { d(e)|e∈E(G)).}This paper proves that the strong chromatic index of the graph without K+1,3 with the maximum degree△ and edge degree of the graph greater than the number of vertices is at most △2-△+1.

strong edge-coloringstrong chromatic indexedge degree

袁佳鑫、黄明芳

展开 >

武汉理工大学理学院,湖北武汉 430070

强边染色 强边色数 边度

国家自然科学基金资助项目

12261094

2024

山东大学学报(理学版)
山东大学

山东大学学报(理学版)

CSTPCD北大核心
影响因子:0.437
ISSN:1671-9352
年,卷(期):2024.59(2)
  • 3