首页|模糊边界剥离聚类

模糊边界剥离聚类

Fuzzy border-peeling clustering

扫码查看
提出了一种模糊边界剥离聚类(fuzzy border-peeling clustering,FBP)算法.首先,采用了 一种基于Cauchy核的动态密度估计方式来计算数据点密度;然后,使用逐层剥离策略区分边界数据和核心数据;接着,利用核心数据间的可达性实现核心区域聚类;最后,采用模糊分配策略实现边界数据的软划分.在人工数据集和真实数据集上与10种算法(包含6种密度聚类算法和4种模糊聚类算法)作了对比.实验结果表明,在所有数据集上,FBP的调整兰德系数ARI指标平均提高了 21%~60%,FBP的标准化互信息NMI指标平均提升了 12%~47%,基于Cauchy核和模糊分配策略优化后的边界剥离聚类算法显著提高了聚类的准确性.
A fuzzy border-peeling clustering(FBP)algorithm is proposed.First,a density estimation method based on Cauchy kernel is used to calculate the densities of data points.Secondly,the boundary data are separated from the core data using the layer-by-layer peeling strategy.Thirdly,the reachability between the core data is used to achieve the core region clustering.Finally,a fuzzy assignment strategy is used to achieve the soft partitioning of the boundary data.A comparison is made between the fuzzy border-peeling clustering and 10 benchmark algorithms,including 6 density-based clustering algorithms and 4 fuzzy clustering algorithms,on artificial and real-world datasets.The experimental results show that on all datasets,FBP has the ARI(adjusted rand index)increased by 21%to 60%on average,and FBP has the NMI(normalized mutual information)increased by 12%to 47%on average.The border-peeling clustering algorithm optimized based on Cauchy kernel and fuzzy assignment strategy significantly improves the accuracy of clustering.

density-based clusteringborder-peeling clusteringfuzzy clusteringsoft clusteringCauchy kernel function

孙嘉睿、杜明晶

展开 >

江苏师范大学计算机科学与技术学院,江苏徐州 221100

密度聚类 边界剥离聚类 模糊聚类 软化分 柯西核函数

国家自然科学基金江苏师范大学研究生科研创新计划

620061042022XKT1528

2024

山东大学学报(理学版)
山东大学

山东大学学报(理学版)

CSTPCD北大核心
影响因子:0.437
ISSN:1671-9352
年,卷(期):2024.59(3)
  • 25