首页|高维数据的降维与检索算法

高维数据的降维与检索算法

Dimensionality reduction and retrieval algorithms for high dimensional data

扫码查看
目前大多研究通过一些降维方法将高维向量转化为低维向量表示,再应用相关向量检索优化技术实现快速相似性检索,从而提高大模型应用表现.当前针对高维数据的降维方法繁多分散,在不同的研究背景下所采用的降维方法不尽相同,同样地,在向量检索技术上也存在大量不同的检索思路与优化方法.通过综述近期的降维和检索算法的主要思路及其优化方法,有助于产生二者之间的启发性联系,支撑后续高维向量检索优化算法研究的展开和深入.
At present,most studies use some dimensionality reduction methods to convert high-dimensional vectors into low-dimen-sional vector representations,and then apply related vector retrieval optimization technology to achieve fast similarity retrieval,thereby improving the application performance of large models.Currently,there are many and scattered dimensionality reduction methods for high-dimensional data,and the dimensionality reduction methods used in different research backgrounds are different.Similarly,there are also many different retrieval ideas and optimization methods in vector retrieval technology.By reviewing the main ideas and optimization methods of recent dimensionality reduction and retrieval algorithms,this paper helps to generate inspir-ing connections between the two and support the development and in-depth research of subsequent high-dimensional vector retrieval optimization algorithms.

high-dimensional datadimensionality reductionretrieval algorithmapproximate nearest neighbor search

邵伟、朱高宇、于雷、郭嘉丰

展开 >

中国科学院计算技术研究所网络数据科学与技术重点实验室,北京 100190

中国科学院大学计算机科学与技术学院,北京 100049

高维数据 数据降维 检索算法 近似最近邻检索

国家重点研发计划资助项目

2022YFB2404200

2024

山东大学学报(理学版)
山东大学

山东大学学报(理学版)

CSTPCD北大核心
影响因子:0.437
ISSN:1671-9352
年,卷(期):2024.59(7)
  • 8