首页|基于双目标的MNSGA-Ⅱ算法求解非线性方程组

基于双目标的MNSGA-Ⅱ算法求解非线性方程组

MNSGA-Ⅱ algorithm based on bi-objective for solving nonlinear equation systems

扫码查看
通过MONES转换技术将非线性方程组转换为双目标优化问题,利用MNSGA-Ⅱ算法中的动态拥挤距离策略提高Pareto解集的多样性,在种群选择过程中动态计算个体的拥挤距离.为了验证算法的性能,选择30个非线性方程组进行测试,对比了基于MONES转换技术的NSGA-Ⅱ、动态NSGA-Ⅱ和MNSGA-Ⅱ算法.实验结果表明,基于MONES转换技术的MNSGA-Ⅱ算法在寻根率和成功率方面更具优势.最后,将3个算法得到的Pareto前沿进行对比,且验证本文算法所得Pareto前沿在均匀性和收敛性方面表现较好.
MONES transformation technique is applied to transform the problem of solving nonlinear equation systems into a bi-objec-tive optimization problem,and a dynamic crowding distance strategy of MNSGA-Ⅱ algorithm is included to dynamically calculate indi-vidual crowding distance in the process of population selection,which improves the diversity of Pareto front.In order to verify the per-formance of algorithm,thirty nonlinear equation systems are selected for testing NSGA-Ⅱ,dynamic NSGA-Ⅱ and MNSGA-Ⅱ algo-rithm based on MONES transformation technique.Experimental results show that MNSGA-Ⅱ algorithm based on MONES transforma-tion technique has a better root-found ratio and success rate.Finally,the Pareto front of three algorithms mentioned above is compared,and the uniformity and convergence of Pareto front of the proposed algorithm performs better than others'.

nonlinear equation systemMONES transformation techniquedynamic crowding distancenon-dominated sorting ge-netic algorithm

李侦瑷、韦慧、陈馨

展开 >

安徽理工大学数学与大数据学院,安徽淮南 232001

非线性方程组 MONES转换技术 动态拥挤距离 非支配排序遗传算法

安徽省自然科学基金资助项目国家自然科学基金资助项目

2108085MA1411601007

2024

山东大学学报(理学版)
山东大学

山东大学学报(理学版)

CSTPCD北大核心
影响因子:0.437
ISSN:1671-9352
年,卷(期):2024.59(10)
  • 1