首页|基于成本期望的高桩码头桩基损伤识别神经网络评价

基于成本期望的高桩码头桩基损伤识别神经网络评价

扫码查看
应用神经网络进行结构损伤检测的理论研究已有许多成果,但由于基础数据的准确性与完备性不足,网络的泛化能力受到限制,传统的网络评价模式往往无法评价这样的神经网络是否具有实际应用的价值,进而限制这种技术在港工结构损伤识别领域的实际应用.从工程需要出发,改变传统的以召回率为指标的评估模式,考虑实际工程应用中误诊会带来进一步检测的经济损失,而漏诊会造成结构失稳破坏的重大风险,以损伤识别漏诊率与误诊率为评估指标,定义工程采纳损伤识别结果的成本期望,以此确定网络评价约束条件,改进了传统的仅从召回率角度对网络实际工程可行性进行评价的方式.
Neural network evaluation of pile foundation damage recognition for high-pile piers based on cost expectation
There have been many achievements in the theoretical research on the application of neural networks to structural damage detection.However,due to the lack of accuracy and completeness of basic data,the generalization ability of networks was limited,and the traditional network evaluation model was often unable to evaluate whether such neural networks have practical application value,thus the practical application of this technique in the field of structural damage identification in port engineering was limited.In this paper,the cost expectation of using neural network damage identification results in engineering is proposed.This cost expectation considered the economic loss of further testing caused by misdiagnosis in practical engineering applications,as well as the significant risk of structural instability and failure caused by missed diagnosis.In addition,a new damage identification network evaluation method based on cost expectationfor high pile wharf is established.This evaluation method took the missed diagnosis rate and misdiagnosis rate of damage identification as the evaluation index,which improved the traditional method of evaluating the feasibility of actual network engineering only from the perspective of recall rate.

damage identificationneural network evaluationcost expectationshigh pile wharftraining set

裴俊彪、孙克俐

展开 >

天津大学 建筑工程学院 水利工程智能建设与运维全国重点实验室,天津 300351

损伤识别 神经网络评价 成本期望 高桩码头 训练集

国家自然科学基金项目

51879187

2024

水道港口
交通部天津水运工程科学研究所

水道港口

CSTPCD
影响因子:0.348
ISSN:1005-8443
年,卷(期):2024.45(5)