首页|波流条件下海上风电单桩平衡冲刷深度预测研究

波流条件下海上风电单桩平衡冲刷深度预测研究

扫码查看
海上风电单桩基础的冲刷问题一直是制约风电行业发展的关键问题,精确预测单桩冲刷深度具有重要意义.基于M5'模型树算法建立了多种波流条件下的单桩基础平衡冲刷深度预测模型.首先,获取单桩冲刷物理模型试验数据集,同时识别影响冲刷预测的关键无量纲参数.随后基于M5'模型树算法建立若干个输入参数与输出参数的组合预测模型,以统计指标相关系数、一致性指数、散布指数和偏差等统计参数为评价指标,对比评价各预测模型以及前人的预测公式.结果表明:在水流单独作用下,输入参数组合选取相对水深、弗劳德数、相对中值粒径、雷诺数能获得最佳预测效果;在波浪单独作用下,KC数和散射参数是预测冲刷深度最重要的控制参数;在波浪与水流共同作用下,最优的输入参数组合为弗劳德数、雷诺数以及相对中值粒径.研究结果能够指导单桩冲刷深度预测,提高预测准确性.
Prediction of offshore wind power monopile scour depth under waves and current conditions
The scouring issue of monopile foundations in offshore wind farms remains a pivotal challenge impeding development of the industry.Precise prediction of the scour depth for monopiles is of paramount importance.In this paper,a predictive model was established for the equilibrium scour depth under various wave-current conditions based on the M5'model tree algorithm.Initially,a dataset from physical model experiments on monopile scour was acquired,and key dimensionless parameters influencing scour prediction were identified.Subsequently,several predictive models were established based on the M5'model tree algorithm,correlating various input parameters with output parameters.The models were evaluated using statistical metrics such as the correlation coefficient,consistency index,dispersion index,and bias.These statistical parameters served as benchmarks to compare and assess the performance of each predictive model against existing prediction formulas.The research findings indicate that due to current,the optimal combination of input parameters for predicting outcomes includes relative water depth,Froude number,relative median grain size,and Reynolds number.These parameters yield the best predictive performance.Conversely,the Keulegan-Carpenter number and the scattering parameter emerge as the most critical control parameters for predicting wave-induced scour depth.The ideal input parameter combination comprises the Froude number,Reynolds number,and relative median grain size in combined waves and current.These research outcomes can guide the prediction of scour depth around monopiles,enhancing the accuracy of such predictions.

monopilelocal scourM5'model tree algorithmequilibrium scour depth

童鑫、闫福根、于通顺、曾兴井、卞旭旭、赵学文、张超

展开 >

中国海洋大学工程学院,青岛 266400

长江勘测规划设计研究有限责任公司,武汉 430010

中国海洋大学海洋与大气学院,青岛 266400

单桩基础 局部冲刷 M5'模型树 平衡冲刷深度

2024

水道港口
交通部天津水运工程科学研究所

水道港口

CSTPCD
影响因子:0.348
ISSN:1005-8443
年,卷(期):2024.45(6)