首页|基于改进YOLOv5s的船舶水尺检测模型研究

基于改进YOLOv5s的船舶水尺检测模型研究

扫码查看
船舶水尺识别是基于图像处理技术的船舶吃水深度检测的关键环节,但在识别过程中常遇到水尺偏移、旋转、扭曲畸变以及水尺目标过小的问题,其准确识别较为困难.基于YOLOv5s模型,通过引入可变形卷积网络增强对不规则、畸变目标的特征提取能力,引入CBAM注意力机制提高对目标关键区域的特征表达,建立改进的YOLOv5s船舶水尺检测模型.基于泰州高港船闸现场监测图片制作船舶水尺数据集并进行测试,结果表明:改进模型相较于原模型在精确率、召回率、F1分数、mAP@0.5和mAP@0.5:0.95指标方面均有一定程度的提升,且整体性能较常用主流算法更优,有效提高船舶的水尺目标检测精度,可为船舶吃水深度自动化检测提供重要支撑.
Study on improved YOLOv5s-based ship water gauge detection model
Ship water gauge detection is a key in image-based detection technology of ship draft depth.During detection,it faces challenges such as gauge offset,rotation,distortion,and small target sizes,making accurate identification detection difficult.In this paper,an improved YOLOv5s ship water gauge detection model was proposed for enhancing feature extraction capabilities for irregular and distorted targets through the incorporation of Deformable Convolutional Networks(DCN).Additionally,the model incorporated the Convolutional Block Attention Module(CBAM)to improve feature representation in key areas of the target.A ship water gauge dataset was developed based on on-site monitoring images from the Gaogang Ship Lock in Taizhou for testing purposes.Results demonstrate that the improved model shows a significant improvement in terms of precision,recall,Fl score,mAP@0.5,and mAP@0.5:0.95 compared to the original model.Moreover,the overall performance of this model is superior to that of commonly used mainstream algorithms,effectively improving the accuracy of ship water gauge detection.It provides an important support for the automatic detection of ship draft depth.

ship water gauge detectionYOLOv5s modeldeformable convolutionattention mechanismdeep learning

张桂荣、陈志宏、刘志荣、孙巍、侯利军

展开 >

江苏省泰州引江河管理处,泰州 225321

南京畅淼科技有限责任公司,南京 211106

河海大学港口海岸与近海工程学院,南京 210098

船舶水尺检测 YOLOv5s模型 可变形卷积 注意力机制 深度学习

2024

水道港口
交通部天津水运工程科学研究所

水道港口

CSTPCD
影响因子:0.348
ISSN:1005-8443
年,卷(期):2024.45(6)