首页|基于Aspen Hysys模拟100万m3/d的液化厂二级氮膨胀液化工艺

基于Aspen Hysys模拟100万m3/d的液化厂二级氮膨胀液化工艺

扫码查看
本设计中天然气处理量为 100 万m3/d,处理量较小,属于调峰型天然气液化厂,常采用小型LNG液化流程。液化厂中小型液化装置流程主要有以下两大类:单混合制冷剂流程和各类膨胀流程,如二级氮膨胀液化流程、N2-CH4 膨胀液化流程、开式膨胀液化流程。二级氮膨胀液化流程简单、设备数量少,本设计主要利用Aspen Hysys搭建出二级氮膨胀液化静态模拟流程,并基于Matlab工具箱中的遗传算法对液化流程的能耗、液化率进行优化。经过 130 次迭代,模拟计算出优化变量最优值,流程优化前比功耗 0。704 1,液化率为0。951 5,优化后比功耗 0。540 3,液化率为0。951 5,优化前后比功耗降低28。37%。
Process Simulation of a 1 Million m3/d Peak-Shaving Type Natural Gas Liquefaction Plant Based on Aspen Hysys
The natural gas processing capacity in this design is 1 million m3/d,and the processing capacity is small,which belongs to the peak-shaving natural gas liquefaction plant.Peak-shaving natural gas liquefaction plants often use small-scale LNG liquefaction processes due to their small processing capacity.There are two main types of processes suitable for small liquefaction units:single-mix refrigerant process and various expansion processes,such as secondary nitrogen expansion liquefaction process,N2-CH4 expansion liquefaction process,open expansion liquefaction process.In this design,Aspen hysys is mainly used to build a static simulation process of secondary nitrogen expansion liquefaction,and the energy consumption and liquefaction rate of the liquefaction process are optimized based on the genetic algorithm in the Matlab toolbox.After 130 iterations,the optimal value of the optimization variables was simulated and calculated.The specific power consumption before process optimization was 0.704 1,the liquefaction rate was 0.951 5,the specific power consumption after optimization was 0.540 3,and the liquefaction rate was 0.951 5.The specific power consumption before and after optimization was reduced by 28.37%.

natural gas liquefactionsecondary nitrogen expansion liquefactionstatic process simulationgenetic algorithm optimization

袁杨、杨硕、曲增民

展开 >

上海液化天然气有限责任公司,上海 200000

中石油天然气销售山东分公司,山东 济南 250000

东营市东营区住房和城乡建设局,山东 东营 257100

天然气液化 二级氮膨胀液化 静态流程模拟 遗传算法优化

2024

山东化工
山东省化工研究院 山东省化工信息中心

山东化工

影响因子:0.249
ISSN:1008-021X
年,卷(期):2024.53(1)
  • 6