首页|基于对向传播神经网络的酚类化合物毒性的模式识别研究

基于对向传播神经网络的酚类化合物毒性的模式识别研究

扫码查看
介绍了对向传播神经网络的原理、算法。以酚类化合物的 8 个结构特征参数为输入,用对向传播神经网络对酚类化合物的毒性进行模式分类识别。结果表明,对向传播神经网络具有较强的模型拟合能力和泛化能力。网络对 36 个训练样本和 8 个预测样本的毒性类型都能进行准确识别,是一种有效的模式分类识别方法。
Pattern Recognition of Toxioty of Phenolic Compound Based on Counter Propagation Network
This paper introduces the principle and algorithm of counter propagation network.Which using eight structural characteristic parameters of phenolic compounds as inputs to classify and recognize the toxicity of phenolic compound by counter propagation network.The results indicate that the counter propagation network has strong model fitting and generalization abilities.The network can accurately identify the toxicity types of 36 training samples and 8 prediction samples.It is an effective pattern classification recognition method.

counter propagation networkphenolic compoundtoxicitypattern recognition

申明金

展开 >

川北医学院药学院,四川南充 637000

对向传播神经网络 酚类化合物 毒性 模式识别

2024

山东化工
山东省化工研究院 山东省化工信息中心

山东化工

影响因子:0.249
ISSN:1008-021X
年,卷(期):2024.53(5)
  • 6