基于半导体的光电化学(PEC)水分解技术,利用可再生能源制氢,能够实现氢能全产业链的绿色无碳化,是极具潜力的氢能发展路径之一。氧化钨(WO3)作为一种可见光响应的n型半导体,是PEC水分解制氢最有前途的材料之一。然而,可见光利用率低以及光生载流子复合率高等问题严重影响着WO3 光电极的实际应用。将有机半导体聚多巴胺(PDA)与无机半导体WO3 结合,成功构筑了WO3/PDA复合电极,其光电流密度在 1。23 V vs。RHE偏压下达到 0。67 mA/cm2,是单一WO3 光电极(0。30 mA/cm2 1。23 V vs。RHE)的2。23 倍。研究表明,在WO3/PDA复合电极中,有机组分PDA展现出了优异的可见光吸收能力,无机组分WO3 提供了高载流子迁移率和快速的电荷传输通道,同时WO3 与PDA之间形成的异质结显著提高了载流子的分离效率,从而实现了载流子的有效分离与传输,因此光电催化性能得到了显著的提升。提出了一种通过构筑有机-无机复合结构来增强光电极光电性能的新策略。
Research on Construction and Photoelectrochemical Performances of WO3/PDA Photoelectrode
Photoelectrochemical(PEC)water splitting technology based on semiconductors,which harnesses renewable energy to produce hydrogen,represents a promising pathway towards achieving a fully green and carbon-neutral hydrogen energy chain.Tungsten oxide(WO3),an n-type semiconductor material responsive to visible light,is considered one of the most promising candidates for PEC water splitting.However,practical applications of WO3 photoanodes are severely hindered by issues such as low visible light utilization efficiency and high photogenerated carrier recombination rates.In this work,WO3/PDA composite photoelectrode was successfully constructed by combining the organic semiconductor polydopamine(PDA)with the inorganic semiconductor WO3.The WO3/PDA photoelectrode showed a photocurrent value of 0.67 mA/cm2(1.23 V vs.RHE),which is 2.23 times than that of WO3 photoanode(0.30mA/cm2 1.23V vs.RHE).In the WO3/PDA photoelectrode,the organic component PDA exhibits excellent visible light absorption capabilities,while the inorganic component WO3 provides high carrier mobility and rapid charge transport channels.Furthermore,the heterojunction formed between WO3 and PDA significantly enhances carrier separation efficiency,enabling effective carrier separation and transport,thereby leading to a remarkable improvement in PEC performance.This work presents a novel strategy to enhance the photoelectrochemical performance of photoelectrodes by constructing organic-inorganic composite structures.