首页|基于强化学习的盾构抗扰纠偏控制研究

基于强化学习的盾构抗扰纠偏控制研究

Shield Deviation Correction Control Based on Active Disturbance Rejection Control and Q-Learning

扫码查看
由于盾构掘进姿态对隧道成型和掘进效率影响较大,而实际影响掘进姿态各要因的强耦合和非线性存在复杂难辨性,常规的调参方法稳态效果不佳.为优化盾构挖掘过程中的姿态轨迹纠偏,提出一种基于自抗扰控制和Q学习优化的复合控制方法.首先,将盾构油缸调压分区数学模型化,设计出线性自抗扰控制器;然后,在自抗扰控制框架基础上,利用Q学习算法实现控制器参数的自适应整定;最后,通过仿真模型验证所提方法的有效性,为编写设备控制程序提供技术支撑.相比于传统PID控制和自抗扰控制,所提方法可实现自适应参数调试,提高盾构纠偏姿态的控制性能.
To optimize attitude trajectory correction during shield excavation,a composite control method based on self-disturbance rejection control and Q-learning optimization is proposed.This is because the shield-tunneling posture considerably affects tunnel formation and excavation efficiency,strong coupling and nonlinearity that affect the excavation posture in practice are complex and difficult to distinguish,and steady-state effect of conventional parameter adjustment methods is insufficient.The proposed control method involves the mathematical modeling of the pressure regulation zones of the shield oil cylinder and designing of a linear self-disturbance rejection controller.Based on the self-disturbance rejection control framework,the Q-learning algorithm is used to achieve adaptive tuning of controller parameters.The effectiveness of the proposed method is validated through model simulations,providing technical insights for developing device control programs.Compared with the traditional proportional-integral-derivative and self-disturbance rejection controls,the proposed method achieves adaptive parameter debugging and improves the control performance of the deviation correction attitude of shield.

shielddeviation correction controlactive disturbance rejection controlQ-learning

赵文佳、石小伟、赵茜、杨璐、张艳丽、张亦敏

展开 >

中铁工程装备集团(天津)有限公司,天津 300450

盾构 纠偏控制 自抗扰控制 Q学习

2024

隧道建设(中英文)
中铁隧道集团有限公司洛阳科学技术研究所

隧道建设(中英文)

CSTPCD北大核心
影响因子:0.785
ISSN:2096-4498
年,卷(期):2024.44(2)
  • 16