首页|机器视觉下多特征组合的围岩风化程度判定方法

机器视觉下多特征组合的围岩风化程度判定方法

Method for Determining Weathering Degree of Surrounding Rock With Multifeatures Based on Machine Vision

扫码查看
针对围岩风化程度判定存在主观性强、准确率低的问题,开展基于图像识别和机器学习的围岩风化程度定量化判别技术研究.依托大广复线扩容工程搜集隧道施工期间掌子面的图像,采用数字图像处理技术对掌子面图像颜色信息、表面纹理信息、节理信息进行自动化提取.基于提取的指标参数,借助机器学习方法进行指标筛选,并建立围岩风化程度预测模型.通过研究可以得到:1)对预测模型准确率贡献度由大到小的指标分别为颜色、完整性和纹理,各单一指标预测模型准确率分别为 71.91%、70.78%、47.19%;2)多指标组合模型相较单一指标模型判定准确率更高,采用颜色、纹理、完整性 3 个指标的组合模型,准确率达到86.52%;3)对 13 个二级指标进行特征筛选,剔除 5 个贡献度较低的纹理特征指标,采用剩余的 8 个关键指标构建预测模型,预测精度仍能达到 85%,满足工程需求.研究结果表明:掌子面图像的颜色、纹理、完整性信息能够有效表征围岩风化程度,建立在这些指标之上的机器学习预测模型能够稳定有效地对掌子面的风化程度进行判定.
On-site determination of the weathering degree of the surrounding rock has disadvantages such as strong subjectivity and poor accuracy.Therefore,a quantitative identification technology based on image recognition and machine learning is developed.Based on the images of the tunnel working surface collected from the Daqing-Guangzhou double-line expansion project,the digital image processing technology is applied to automatically extract the color,texture,and joint information of the tunneling face.Next,a model for determining the weathering degree of the surrounding rock is established by applying machine learning to filter the extracted parameters.Conclusions drawn are as follows:(1)The indices contributing to the accuracy of the prediction model from large to small are color,integrity,and texture,corresponding to the prediction accuracies of 71.91%,70.78%,and 47.19%.(2)Compared with the single index prediction model,the multi-index prediction model has a higher prediction accuracy.The prediction model with three indices of color,texture,and integrity exhibits a prediction accuracy of 86.52%.(3)Eight key secondary indices are filtered from 13 indices,based on which a new prediction model is constructed with a prediction accuracy of 85%,meeting the engineering requirements.Results show that color,texture,and integrity information can effectively represent the weathering degree of the surrounding rock.Additionally,the prediction model based on these indices can stably and effectively determine the weathering degree of the tunneling face.

tunnel engineeringweathering degree of surrounding rockmachine learningdigital image processing

毛勤平、刘军成、杨晓秋、刘学增、桑运龙

展开 >

江西省交通投资集团有限责任公司项目建设管理公司,江西 南昌 330003

上海同岩土木工程科技股份有限公司,上海 200092

上海地下基础设施安全检测与养护装备工程技术研究中心,上海 200092

同济大学土木工程学院地下建筑与工程系,上海 200092

展开 >

隧道工程 围岩风化程度 机器学习 数字图像处理技术

江西省交通厅科技项目

2020C003

2024

隧道建设(中英文)
中铁隧道集团有限公司洛阳科学技术研究所

隧道建设(中英文)

CSTPCD北大核心
影响因子:0.785
ISSN:2096-4498
年,卷(期):2024.44(4)
  • 21