隧道建设(中英文)2024,Vol.44Issue(5) :1056-1067,中插59-中插70.DOI:10.3973/j.issn.2096-4498.2024.05.013

集成卷积神经网络和视觉Transformer的隧道掌子面岩性判识研究

Ensemble Convolutional Neural Networks and Visual Transformers:Research on Tunnel Face Rock Identification

向露露 童建军 王明年 苗兴旺 叶沛
隧道建设(中英文)2024,Vol.44Issue(5) :1056-1067,中插59-中插70.DOI:10.3973/j.issn.2096-4498.2024.05.013

集成卷积神经网络和视觉Transformer的隧道掌子面岩性判识研究

Ensemble Convolutional Neural Networks and Visual Transformers:Research on Tunnel Face Rock Identification

向露露 1童建军 1王明年 1苗兴旺 1叶沛1
扫码查看

作者信息

  • 1. 西南交通大学 交通隧道工程教育部重点实验室,四川 成都 610031;西南交通大学土木工程学院,四川 成都 610031
  • 折叠

摘要

为研究综合高效的隧道掌子面岩性智能分类问题,首先,通过收集高铁沿线施工隧道高清掌子面照片、地质素描图及工程地质说明,筛选并统计出灰岩、泥岩、砂岩、玄武岩 4 种岩性,在此基础上,采用图像增强扩充样本数量并构建岩性样本集;然后,基于上述样本集分别构建ResNet50V2 岩性分类迁移模型及VIT岩性分类模型,对比二者岩性分类效果,并采用Stacking方法集成 2 种模型的分类特点;最后,通过对比 3 种元学习器(逻辑回归、支持向量机、决策树)对 2 种模型的集成融合效果来选取最适用的元学习器.结果表明:采用逻辑回归集成ResNet50V2 及VIT所构建的集成模型对岩性的分类效果最好,能充分融合掌子面岩性的全、局部特征来进行分类,模型准确率达到 93.8%.

Abstract

The application of an increasing number of new technologies in tunnel construction is a consequence of the rapid development of intelligent tunnel construction.Among these,the use of machine vision instead of human eyes for geological information recognition in tunnels has become increasingly widespread.The authors build on this trend by using machine vision to investigate intelligent classification methods for the lithology of the tunnel face.First,four types of lithology(limestone,mudstone,sandstone,and basalt)are screened and counted by collecting high-definition tunnel face photos,geological sketches,and engineering geological descriptions along the high-speed railway.On this basis,image enhancement techniques are used to expand the number of samples and construct a lithology sample set.Then,based on the above sample sets,the ResNet50V2 lithology classification transfer learning model and the VIT lithology classification model are constructed.The lithology classification effects of the two models are compared,and the Stacking method is used to integrate the classification characteristics of the two models.The authors select the most suitable meta-learner by comparing the integrated fusion effects of three meta-learners,logistic regression(LR),support vector machine,and decision tree,on the two models.The results reveal that the Stacking model constructed by LR integrated with ResNet50V2 and VIT has the best classification effect on lithology.Apart from having an accuracy rate of 93.8%,it can also fully integrate the overall and local features of the lithology of the tunnel face for better classification.

关键词

隧道/掌子面岩性/卷积神经网络/视觉Transformer/集成学习/Stacking方法

Key words

tunnel/lithology of tunnel face/convolutional neural network/visual Transformer/ensemble learning/Stacking method

引用本文复制引用

基金项目

中国国家铁路集团有限公司科技研发计划(P2022G055)

中国国家铁路集团有限公司科技研发计划(K2021G024)

出版年

2024
隧道建设(中英文)
中铁隧道集团有限公司洛阳科学技术研究所

隧道建设(中英文)

CSTPCD北大核心
影响因子:0.785
ISSN:2096-4498
参考文献量10
段落导航相关论文