首页|基于钻进参数和岩性的钻爆法隧道围岩智能分级模型

基于钻进参数和岩性的钻爆法隧道围岩智能分级模型

Intelligent Classification for Surrounding Rock of Tunnel by Drilling and Blasting Method Based on Drilling Parameters and Lithology

扫码查看
为进一步提高基于钻进参数的围岩智能分级模型判识准确率,引入围岩岩性作为已知条件,对不同岩性分别建立基于钻进参数的围岩智能分级模型.首先,依托宜兴高铁、郑万高铁隧道工程中凿岩台车采集到的钻进参数,将其根据围岩岩性划分为白云岩、花岗闪长岩、灰岩、砂岩、页岩 5 类子数据集;然后,进行数据清洗、特征提取,对各子数据集及原始数据集按照 4∶1 的比例拆分为训练集和测试集,分别以提取的特征和原始特征均值 2 类特征集合作为输入;最后,使用机器学习随机森林算法建立 5 个基于钻进参数和岩性的围岩智能分级模型以及基于钻进参数的围岩智能分级模型,评估每个模型的泛化性能.结果显示:1)以提取特征集合为输入的白云岩、花岗闪长岩、灰岩、砂岩、页岩 5 种围岩智能分级模型在测试集上的准确率分别为 85.48%、92.16%、88.62%、85.00%、89.47%,不考虑岩性的围岩智能分级模型的测试集准确率为 84.91%.2)相比不考虑岩性的围岩智能分级模型,基于钻进参数和岩性的围岩智能分级模型测试集准确率提高 0.09%~7.25%;相比不进行钻进参数特征提取,围岩智能分级模型准确率提升1.61%~13.82%.由此表明:进行钻进参数特征提取能够有效提升围岩智能分级模型的准确率;相比不考虑岩性的围岩智能分级模型,考虑岩性的围岩智能分级模型稳定性提高,模型的泛化能力提升.
An intelligent model that considers lithology in classifying surrounding rock is established based on drilling parameters so as to further improve the accuracy of predicting the surrounding rock.First,the drilling parameters collected by a drilling trolley in the Yichang-Xingshan and Zhengzhou-Wanzhou high-speed railway tunnels are divided into the five data subsets of dolomite,granodiorite,limestone,sandstone,and shale.Next,data cleaning and feature extraction are conducted,and each data subset and original data set are divided into a training set and test set in a 4∶1 ratio.Furthermore,the extracted features and the original features are used as inputs to establish five intelligent classification models for surrounding rock based on drilling parameters and lithology and an intelligent classification model for surrounding rock based on drilling parameters using a machine learning random forest algorithm.Finally,the generalization performance of each model is evaluated.The results demonstrate the following.(1)The models that are based on dolomite,granodiorite,limestone,sandstone,and shale achieve an accuracy on the test set of 85.48%,92.16%,88.62%,85.00%,and 89.47%,respectively,and the accuracy of the model that does not consider lithology is 84.91%.(2)Compared with the improvement in the model that considers lithology,the improvement in the accuracy on the test set of the surrounding rock intelligent classification model based on drilling parameters and lithology is 0.09%-7.25%,and the improvement in model accuracy is 1.61%-13.82%compared with no feature extraction.This shows that extracting the features of the drilling parameters effectively improves the accuracy of the model.The intelligent model that considers lithology in surrounding rock classification is more stable and achieves better generalization performance than the model that does not consider lithology.

tunnel engineeringintelligent surrounding rock classificationrandom forestdrilling parametersfeature extractionlithology

夏覃永、王明年、孙鸿强、林鹏、赵思光

展开 >

西南交通大学 极端环境岩土和隧道工程智能建养全国重点实验室,四川 成都 610031

西南交通大学土木工程学院,四川 成都 610031

中国铁路经济规划研究院有限公司铁路工程技术标准所,北京 100038

隧道工程 围岩智能分级 随机森林算法 钻进参数 特征提取 岩性

国家自然科学基金资助项目中国国家铁路集团有限公司科技研究开发计划重大课题中国国家铁路集团有限公司科技研究开发计划重大课题

51878567K2020G035K2021G024

2024

隧道建设(中英文)
中铁隧道集团有限公司洛阳科学技术研究所

隧道建设(中英文)

CSTPCD北大核心
影响因子:0.785
ISSN:2096-4498
年,卷(期):2024.44(7)
  • 21