首页|高速列车通过不同隧道衬砌结构时气动效应特性研究

高速列车通过不同隧道衬砌结构时气动效应特性研究

Aerodynamic Effect Characteristics of Various Tunnel Lining Structures Passed by High-Speed Trains

扫码查看
为研究隧道衬砌结构上的气动压力时空特征和不同影响因素下气动效应的变化规律,基于滑移网格技术、有限体积法理论以及非定常、黏性、可压缩性N-S方程和RNG 湍流方程,建立精细化的隧道-列车流固耦合数值计算模型,通过动模型试验验证数值计算的合理性.研究表明:1)全过程压力云图和流场云图可清晰地揭示出气动压力波的传播过程及特性;2)基于列车长度修正了最大压缩波的既有经验公式,提出列车摩阻因数为 2.255 Pa/m;3)拟合出了不同隧道衬砌结构下压力峰峰值衰减率与循环周期数的关系式,为后期分析气动荷载对衬砌结构的疲劳损伤奠定了理论基础;4)揭示出列车尾部完全驶出隧道后或长隧道中管片结构上的气动压力峰值相较于模筑衬砌隧道中的气动压力峰值衰减更快,盾构隧道出口外 20 m和 50 m处的微气压波幅值相较于模筑衬砌隧道降低 1.53%~5.5%.
Utilizing the slip grid technique,finite volume method theory,the unsteady viscous compressible Navier-Stokes(N-S)equation,and RNG turbulence equation,a refined fluid-solid coupling numerical calculation model for tunnel structure-train interaction is established.This model examines the temporal and spatial characteristics of aerodynamic pressure on tunnel lining structures,and the variation patterns of aerodynamic effects under various conditions.Additionally,the validity of the numerical calculation is confirmed through dynamic model testing.The findings are as follows:(1)The pressure and flow field cloud images vividly depict the propagation process and characteristics of aerodynamic pressure waves.(2)The existing empirical formula for the maximum compression wave is revised based on train length,proposing a train friction coefficient of 2.255 Pa/m.(3)The relationship between the attenuation rate of peak-to-peak pressure under different tunnel lining structures and the number of cycle periods is established,providing a theoretical basis for subsequent analysis of fatigue damage to the lining structures under aerodynamic load.(4)The peak of aerodynamic pressure on the segment structure decreases more rapidly after the train tail exits the tunnel or in a long tunnel compared to a mold-lined tunnel.Furthermore,the amplitude of the micro-pressure wave at 20 m and 50 m outside the exit of the shield tunnel decreases by approximately 1.53%to 5.5%compared with that in the mold-lined tunnel.

high-speed trainmold-lined tunnelshield tunnelnumerical simulationpeak aerodynamic pressuremicro-pressure wave

李飞龙、姜昌山、余虔、韩进宝、张合青、骆建军、王锦华

展开 >

北京交通大学土木建筑工程学院,北京 100044

民航机场规划设计研究总院有限公司,北京 100029

机场工程安全与长期性能交通运输行业野外科学观测研究基地,北京 101312

高速列车 模筑衬砌隧道 盾构隧道 数值模拟 气动压力峰值 微气压波

国家自然科学基金项目北京市博士后工作经费资助项目云南省科技厅重点研发计划民航机场规划设计研究总院有限公司科研项目

518780382024-13641903366mhzyky-2022-20

2024

隧道建设(中英文)
中铁隧道集团有限公司洛阳科学技术研究所

隧道建设(中英文)

CSTPCD北大核心
影响因子:0.785
ISSN:2096-4498
年,卷(期):2024.44(7)
  • 10