隧道建设(中英文)2024,Vol.44Issue(11) :2119-2132.DOI:10.3973/j.issn.2096-4498.2024.11.002

机器学习预测盾构掘进地表沉降的研究进展及展望

Research Progress and Prospects for Machine Learning in Predicting Surface Settlement Induced by Shield Tunneling

杨明辉 宋牧原 姚高占 陈伟 左国恋 蔡智远
隧道建设(中英文)2024,Vol.44Issue(11) :2119-2132.DOI:10.3973/j.issn.2096-4498.2024.11.002

机器学习预测盾构掘进地表沉降的研究进展及展望

Research Progress and Prospects for Machine Learning in Predicting Surface Settlement Induced by Shield Tunneling

杨明辉 1宋牧原 2姚高占 3陈伟 3左国恋 3蔡智远3
扫码查看

作者信息

  • 1. 厦门大学建筑与土木工程学院,福建厦门 361005
  • 2. 厦门大学建筑与土木工程学院,福建厦门 361005;湖南大学土木工程学院,湖南长沙 410082
  • 3. 湖南大学土木工程学院,湖南长沙 410082
  • 折叠

摘要

针对采用机器学习方法预测盾构掘进地表沉降的研究,围绕预测模型的输入参数、预测目标、算法选取和超参数智能优化4个方面的研究进展开展系统综述,总结出当前研究中亟需解决的关键问题,并展望该领域的未来发展方向.研究表明:1)结合隧道几何参数、地层参数和盾构操作参数等信息进行沉降预测是当前主流的研究方向;2)沉降预测前需根据预测目标选取合适的模型和输入参数;3)通过超参数智能算法优化模型参数以提升预测精度.然而,现阶段的研究仍面临着诸多挑战:1)预测模型普遍缺乏特征自主识别能力且易发生过拟合;2)对海量数据的挖掘与分析尚不深入;3)尚未构建基于多源异构数据集的强鲁棒性模型;4)对地表沉降发展过程的预测研究相对匮乏.最后,展望盾构隧道智能掘进领域中需重点攻克的难题.

Abstract

The authors systematically review the progress of machine learning applications in predicting surface settlement caused by shield tunneling,focusing on input parameters,prediction objectives,algorithms selection,and hyperparameter optimization.Key challenges are identified,and future research directions are proposed.The findings include the following:(1)Integration of tunnel geometric parameters,stratum properties,and shield machine operation parameters constitutes the predominant research focus for settlement prediction.(2)Selecting suitable models and input parameters tailored to specific prediction objectives is critical.(3)Intelligent hyperparameter optimization can significantly enhance prediction accuracy.However,current studies face several limitations:(1)Most models lack the ability to autonomously identify relevant features and are susceptible to overfitting;(2)Analysis and utilization of large-scale datasets remain inadequate;(3)Robust models leveraging multi-source heterogeneous datasets are yet to be developed;and(4)Research on predicting the developmental processes of surface settlement is relatively scarce.Finally,critical issues requiring attention in advancing intelligent shield tunneling are discussed.

关键词

盾构掘进/地表沉降预测/机器学习/超参数优化

Key words

shield tunneling/surface settlement prediction/machine learning/hyperparameter optimization

引用本文复制引用

出版年

2024
隧道建设(中英文)
中铁隧道集团有限公司洛阳科学技术研究所

隧道建设(中英文)

CSTPCD北大核心
影响因子:0.785
ISSN:2096-4498
段落导航相关论文