首页|EEG信号结合特征融合技术诊断精神分裂症和抑郁症

EEG信号结合特征融合技术诊断精神分裂症和抑郁症

扫码查看
目的 探索通过机器学习算法结合脑电信号实现对精神分裂症和抑郁症的诊断.方法 分别采集33例精神分裂症患者和28例抑郁症患者的脑电信号,并将采集到的脑电图信号格式由EDF格式转化为ASCII格式,提取脑电信号的Lempel-Ziv复杂度、最大李雅普诺夫指数、Higuchi分形维数等特征.应用特征融合策略对特征进行融合,形成新的特征向量,然后利用机器学习分类算法进行分类研究.结果 最终基于高斯核函数的支持向量机(SVM)的分类准确率为84.85%,其中灵敏度为89.47%,特异性为78.57%.结论 通过提取EEG脑电信号特征结合机器学习算法对精神分裂症和抑郁症进行识别,对开发新型的精神分裂症和抑郁症的诊断技术具有一定的研究意义.
EEG signals combined with feature fusion in the diagnoses of schizophrenia and depression
Objective To explore machine learning algorithms combined with EEG signals in the diagnoses of schizophrenia and depression.Methods EEG signals from 31 patients with schizophrenia and 28 patients with depression were selected and converted from EDF format to ASCII format.Features such as Lempel-Ziv complexity,maximum Lyapunov exponent,and Higuchi fractal dimension were extracted from the EEG signals.These features were then fused using a feature fusion strategy to create new feature vectors,which were classified through machine learning algorithms.Results The classification accuracy of the support vector machine(SVM)with a Gaussian kernel was 84.85%,with a sensitivity of 89.47%and a specificity of 78.57%.Conclusion This study demonstrates the potential of combining EEG signal feature extraction with machine learning algorithms for the identification of schizophrenia and depression,offering valuable insights for developing novel diagnostic techniques for these mental disorders.

SchizophreniaDepressionEEGMachine learningFeature fusion

吴恒、刘浩、肖萌、肖开提·苏理旦

展开 >

830000 新疆乌鲁木齐,新疆医科大学附属肿瘤医院

新疆大学软件学院

乌鲁木齐市第四人民医院

精神分裂症 抑郁症 脑电信号 机器学习 特征融合

乌鲁木齐市卫生健康委科技计划项目

202030

2024

精神医学杂志
山东省精神卫生中心

精神医学杂志

CSTPCD
影响因子:1.45
ISSN:1009-7201
年,卷(期):2024.37(2)