首页|基于多任务学习的轨道交通短时客流预测研究

基于多任务学习的轨道交通短时客流预测研究

扫码查看
为了精准预测轨道交通的短时客流量,有效缓解城市交通拥堵,提出了一种基于多任务学习的轨道交通短时客流预测模型,该模型采用残差卷积神经网络和嵌套式长短期记忆神经网络提取客流的时空相关性,引入注意力机制加强模块对特征的提取效果。考虑轨道交通运营的特点,模型进一步选取列车运行特征、轨道交通站点周边公交站点以及兴趣点数据作为外部特征,以提高轨道交通短时客流预测精度。基于北京地铁历史客流数据,在 10、30、60 min等多时间粒度场景下进行实验。结果显示,该方法通过多任务学习的方式建模分析站点进出站客流之间的相互影响,提高了模型的预测性能和泛化能力,为城市轨道交通短时客流预测问题提供了新的思路。
A multitask learning model for the prediction of short-term subway passenger flow
An accurate prediction of short-term subway passenger flowscan effectively alleviate traffic congestion and improve the quality of travel services for urban residents.Herein,we propose a multitask learning-based model for the prediction of short-term subway passenger flows,which uses a residual convolutional neural network(NN)and a nested long short-term memory NN to extract the spatio-temporal correlation of traffic patterns,and introduces an attention mechanism to enhance the feature extraction performance of the NNs.Considering the characteristics of subway operations,the model selects train operation features,bus stops around subway stations,and point of interest data as external features to improve the accuracy of the prediction.Based on the historical data of the Beijing Subway,experiments were conducted in multiple time granularity scenarios,such as 10,30,and 60 min.The results showed that the methodsuccessfully modeled and analyzed the inflow-outflow interaction through multitask learning,improved the prediction performance and generalization ability of the model,and providednovel approaches for the prediction of short-term subway passenger flows.

subwaypassenger flow predictionmultitask learningattention mechanismdeep neural network

张含笑、刘宇然、刘媛、牛子辰

展开 >

北京市地铁运营有限公司,北京 100044

轨道交通 客流预测 多任务学习 注意力机制 深度神经网络

2024

山东科学
山东省科学院

山东科学

CSTPCD
影响因子:0.266
ISSN:1002-4026
年,卷(期):2024.37(1)
  • 11