首页|南京市轨道交通网络抗毁性及韧性研究

南京市轨道交通网络抗毁性及韧性研究

扫码查看
基于网络拓扑化方法Space L构建了轨道交通网络拓扑结构模型,在用UCINET对网络特征进行分析的基础上,选取最大连通子图比例以及整体网络效率为指标对轨道交通网络抗毁性进行分析;综合分析节点的属性值,在采取变异系数法定权的基础上,使用TOPSIS法对节点重要度进行排序;通过摧毁单个重要度较高的节点分析网络韧性,采用指标排序恢复策略来恢复网络,从而得出轨道交通网络的平均韧性值。基于此建立的模型,对南京市 2022 年的轨道交通网络的抗毁性和韧性进行了分析,发现度值高的节点比其他指标对韧性影响更大,优先修复度值最大的节点会使得网络效率上升幅度最大,优先修复接近中心性最大的节点对网络效率的影响较小。
Durability and resilience of Nanjing Rail Transit Network
This study first constructs a topological structure model of the rail transit network based on the Space L network topology method.Herein,upon analyzing network characteristics using UCINET as a basis,the maximum connected subgraph ratio and overall network efficiency are selected as indicators to analyze the resilience of the rail transit network.Then,the article comprehensively analyzes the attribute values of nodes and employs the TOPSIS method to rank the importance of nodes using the coefficient of variation for weighting.Then network resilience is analyzed by destroying individual nodes with high importance,and network recovery is achieved through indicator-based ranking restoration strategies,ultimately yielding the average resilience value of the rail transit network.Furthermore,the resilience and robustness of the rail transit network of Nanjing in 2022 is analyzed based on the established model.Results show that nodes with high degree values often have a greater impact on resilience than other indicators.Prioritizing the repair of nodes with the highest degree values leads to the greatest increase in network efficiency,whereas repairing nodes with the highest closeness to the center has less impact on network efficiency.

complex networksevaluation modelresistance to destructionnetwork resiliencerecovery strategythe largest connected subgraphnetwork efficiency

高占一、朱成娟、韩凌辉

展开 >

大连交通大学交通运输工程学院,辽宁大连 116028

大连海事大学航运经济与管理学院,辽宁大连 116026

复杂网络 评价模型 抗毁性 网络韧性 恢复策略 最大连通子图 网络效率

国家自然科学基金项目辽宁省教育厅自然科学研究项目

72171033JDL2019037

2024

山东科学
山东省科学院

山东科学

CSTPCD
影响因子:0.266
ISSN:1002-4026
年,卷(期):2024.37(4)