首页|基于LSTM模型的污水处理厂出水总氮预测研究

基于LSTM模型的污水处理厂出水总氮预测研究

扫码查看
出水总氮质量浓度是评价污水处理厂生物脱氮效果的关键指标之一。为解决污水厂总氮排放易超标的问题,提出了一个基于长短期记忆网络(LSTM)的出水总氮实时预测模型。利用皮尔逊相关性分析来确定模型输入,并通过网格搜索算法优化模型超参数。将得到的LSTM模型应用于重庆市某实际污水处理厂预测出水总氮,并与传统的时序模型作对比,验证了该模型的可行性。结果表明:LSTM模型能够较好地预测出水总氮,其预测值与实际值的平均绝对误差为0。911 mg/L,均方根误差为 1。074 mg/L,平均绝对百分比误差为 11。28%,各项指标均优于循环神经网络(RNN)模型和自回归差分移动平均(ARIMA)模型。这一模型的构建可以为出水总氮的高效监测提供帮助。
Prediction of effluent total nitrogen in wastewater treatment using LSTM neural network
The effluent total nitrogen(TN)is one of the key indicators for assessing the biological denitrification performance of wastewater treatment plants(WWTPs).To mitigate the prevalent issue of excessive TN discharges from WTTPs,we proposed a real-time prediction model based on long short-term memory(LSTM)networks.We performed Pearson correlation analysis to determine model inputs and used grid search algorithm to optimize model hyperparameters.Then,we used the proposed model to predict the actual effluent TN in a WWTP in Chongqing and compared its predictive performance with that of traditional time-series models.Results indicate that the proposed model can effectively predict effluent TN with an average absolute error of 0.911 mg/L,an average root mean square error of 1.074 mg/L,and an average absolute percentage error of 11.28%.All of these performance indicators surpass those of the recurrent neural network and ARIMA models.The proposed model can serve as the foundation for effective monitoring of effluent TN.

long short-term memory modelPearson correlationgrid search algorithmeffluent total nitrogen

余铭铨、师浩铭

展开 >

中国电建集团华东勘测设计研究院有限公司,浙江 杭州 311122

浙江大学 建筑工程学院,浙江 杭州 310058

LSTM模型 皮尔逊相关性 网格搜索算法 出水总氮

2024

山东科学
山东省科学院

山东科学

CSTPCD
影响因子:0.266
ISSN:1002-4026
年,卷(期):2024.37(6)