首页|基于AM-CNN-LSTM模型的柴油机NOx排放预测

基于AM-CNN-LSTM模型的柴油机NOx排放预测

扫码查看
为精确控制选择性催化还原(selective catalytic reduction,SCR)系统的尿素喷射,提出一种基于注意力机制(attention mechanism,AM)的卷积神经网络(convolutional neural networks,CNN)-长短时记忆网络(long shortterm memory,LSTM)模型预测柴油机NO,排放的方法,根据柴油机NOx生成机理和车辆实际道路测试采集的数据选取相关变量;使用AM-CNN模型提取特征,利用LSTM模型对提取的特征进行分析预测NO,排放.结果表明:该混合模型对NOx排放的预测精度较高,计算时间较少,平均绝对误差为5.307×10-6,决定系数为0.932.根据预测模型中输入参数权重分析影响NOx生成的关键因素,可以为优化柴油机燃烧过程提供参考.
Prediction of diesel engine NOx emission based on AM-CNN-LSTM model
In order to accurately control the urea injection of the selective catalytic reduction(SCR)system,the research proposes a convolutional neural network(CNN)-long short term memory(LSTM)model based on the attention mechanism(AM),and applies it to predict diesel engine NOx emissions.The relevant variables are selected based on the diesel engine NOx generation mechanism and the data collects from actual vehicle road tests.The AM-CNN model is used to extract features,and the LSTM model is used to perform the extraction on the extracted features.The results show that the hybrid model has higher prediction accuracy for NOx emissions,with less calculation time,an average absolute error of 5.307x 10-6,and a coefficient of determination of 0.932.Analyzing the key factors affecting NOx generation based on the weight of the input parameters in the prediction model can provide a reference for optimizing the diesel engine combustion process.

NOx emissionprediction modelAM-CNN-LSTMdeep learningdiesel engine

刘星、周圣凯、田淋瑕、邓小超、林鹏慧、刘泽都、雷艳

展开 >

广西玉柴机器股份有限公司,广西 玉林 537000

北京工业大学机械与能源工程学部汽车系,北京 100124

NO,排放 预测模型 AM-CNN-LSTM 深度学习 柴油机

国家自然科学基金

52371302

2024

内燃机与动力装置
山东省内燃机研究所 潍柴控股集团有限公司

内燃机与动力装置

影响因子:0.192
ISSN:1673-6397
年,卷(期):2024.41(2)
  • 16