首页|基于Sentinel-2卫星影像的滨海筏式养殖区提取研究

基于Sentinel-2卫星影像的滨海筏式养殖区提取研究

扫码查看
我国滨海养殖在全球占有较大比例,快速获取滨海养殖区域大小和分布等信息,有利于实现对养殖区域的监测规划、产量估算和灾害预防。针对筏式养殖区提取过程中出现的与海水区分较困难、识别精度低和"椒盐"噪声等问题,本文将以长山群岛附近筏式养殖区为研究区域,利用哨兵二号(Sentinel-2)卫星遥感影像数据构建光谱、纹理和几何等特征,通过特征域优化(FSO)获得提取筏式养殖区的优选特征,结合面向对象的随机森林、决策树和最近邻3种算法对研究区筏式养殖区进行提取,在分析和对比提取结果基础上,总结了最优分类算法,并验证了 FSO分类的可靠性。结果表明:(1)归一化差分水体指数、几何特征边界和形状、灰度共生矩阵相关性是识别筏式养殖区的最优指标;(2)FS O分类保证了提取精度,减少了数据冗余、提高了运算效率,对筏式养殖的提取具有较高可靠性和适用性;(3)基于FSO和面向对象随机森林的分类方法综合评价最优,总体分类精度为88。8%,κ=0。801,该方法有效避免"椒盐"噪声的产生,可以高效精确的提取筏式养殖区专题信息。本研究可为筏式养殖的动态监测、产量估算等方面提供了技术和专题数据支持。
Extraction of coastal cultivation areas based on Sentinel-2 remote sensing imagery
China's coastal aquaculture accounts for a large proportion across the world.Quickly obtaining information on the size and distribution of coastal aquaculture areas is conducive to the monitoring and planning,yield estimation and disaster prevention of aquaculture areas.In view of the difficulties in distinguishing raft aquaculture area from seawater,low recognition accuracy and"salt and pepper"noise in the process of raft aquaculture area extraction,this paper takes the raft aquaculture area near Changshan Islands as the research area,and uses Sentinel-2 satellite remote sensing image data to construct the features of spectrum,texture and geometric.The feature space optimization(FSO)is used to obtain the dominant features of raft aquaculture area extraction.The object-oriented random forest,decision tree and nearest neighbor algorithms are used to extract the raft aquaculture area in the study area.Based on the analysis and comparison of the extraction results.The optimal classification algorithm is summarized,and the reliability of FSO is verified.The results show that:(1)the normalized difference water index,geometric feature area and length,and gray level co-occurrence matrix correlation are the optimal features for identifying raft culture areas.(2)The classification after feature optimization ensures the extraction accuracy,reduces data redundancy,improves the operation efficiency,and has high reliability and applicability for the extraction of raft culture.(3)The classification method based on feature selection and object-oriented random forest have the best comprehensive evaluation.The overall classification accuracy is 88.8%and κ=0.801,this method can effectively avoid the occurrence of"salt and pepper"noise and can extract the thematic information of raft culture area efficiently and accurately.This study can provide technical and thematic data support for dynamic monitoring and yield estimation of raft culture.

Sentinel-2raft culture areaobject orientedfeature space optimization

武义洲、胡德勇

展开 >

首都师范大学资源环境与旅游学院,北京 100048

首都师范大学三维信息获取与应用教育部重点实验室,北京 100048

Sentinel-2 筏式养殖区 面向对象 特征域优化

国家自然科学基金项目

41671339

2024

首都师范大学学报(自然科学版)
首都师范大学

首都师范大学学报(自然科学版)

CSTPCD
影响因子:0.537
ISSN:1004-9398
年,卷(期):2024.45(5)