首页|椭圆曲线14a2的一族二次扭

椭圆曲线14a2的一族二次扭

扫码查看
本文考虑椭圆曲线14a2的一族二次扭。通过应用经典的2-下降法,证明了这一族中的所有曲线的2-Selmer群都同构于(Z/2Z)2。假设Shafarevich-Tate群有限,那么这些曲线的秩为1,Selmer Z2-余秩为1,且Shafarevich-Tate群的2-部分平凡。进而,根据Gross-Zagier公式和Tunnell-Saito定理,提出了一个问题:对于仅在2,7处分歧的四元数代数所对应的志村曲线,如何证明其上某个具体的Heegner点的非平凡性。
Quadratic twists of the elliptic curve 14a2
In this paper,we consider a quadratic twist family of the elliptic curve 14a2.Using the classical 2-descent method,we prove that all curves in this family have 2-Selmer group(Z/2Z)2.Assume the finiteness of the Shafarevich-Tate group,then these curves have rank 1,Selmer Z2-corank 1,and trivial 2-primary part of the Shafarevich-Tate group.According to the Gross-Zagier formula and the Tunnell-Saito theorem,we raise the question of how to prove the non-triviality of certain explicit Heegner points defined on Shimura curves associated to the quaternion algebra precisely ramified at 2 and 7.

elliptic curveSelmer groupHeegner point

冷明睿、范永丰、蔡立

展开 >

首都师范大学数学科学学院,北京 100048

首都师范大学交叉科学研究院,北京 100048

椭圆曲线 Selmer群 Heegner点

2024

首都师范大学学报(自然科学版)
首都师范大学

首都师范大学学报(自然科学版)

CSTPCD
影响因子:0.537
ISSN:1004-9398
年,卷(期):2024.45(6)