首页|基于复值稀疏Bayesian的系统稳定性辨识

基于复值稀疏Bayesian的系统稳定性辨识

扫码查看
稀疏Bayesian学习是近年来机器学习研究的热点,基于Szegö核的复值稀疏Bayesian学习算法能提供稀疏的有理逼近.提出基于Szegö核的复值稀疏Bayesian学习算法来判定单位圆盘内闭环系统的稳定性,该方法具有可给出逼近的解析表达式和适用范围更广的优点,并且不需要参数控制进行迭代优化,运算速度快.实验结果表明,此方法是有效的.
System Stability Identification Based on Complex-Valued Sparse Bayesian
Sparse Bayesian learning is a hot topic in machine learning research in recent years,and the complex-valued sparse Bayesian learning algorithm based on the Szegö kernel can provide sparse rational approximation.A complex-valued sparse Bayesian learning algorithm based on the Szegö ̈kernel is proposed to determine the stability of the closed-loop system in the unit disk.This method has the advantages of giving approximate analytical expressions and a wider range of applications,and does not require parameter control for iteration optimized for fast operation.Experimental results show that this method is effective.

sparse Bayesianstable systemSzegö kernelstability criterion

谢伟翔、陈安琪

展开 >

韶关学院 数学与统计学院,广东 韶关 512005

稀疏Bayesian 稳定系统 Szegö核 稳定性判据

韶关学院校级自然科学类科研项目

SY2021KJ11

2024

韶关学院学报
韶关学院

韶关学院学报

影响因子:0.28
ISSN:1007-5348
年,卷(期):2024.45(6)