首页|基于改进多目标粒子群算法的分布式光伏并网规划

基于改进多目标粒子群算法的分布式光伏并网规划

扫码查看
针对配电网负荷和光伏出力的时序特性,提出基于电压有功时序灵敏度的配电网分布式光伏选址定容方法.该方法基于电压有功时序灵敏度确定光伏并网的备选节点集合,以光伏日均综合成本、有功网损和节点电压偏移为目标函数,运用改进的多目标粒子群算法求解.该算法根据粒子与最优粒子适应度值的欧氏距离来指导惯性权重的取值,提高算法的全局搜索能力.通过粒子间的密集程度来更新Pareto解集,引入maxmin函数指导全局最优值的选取,保证Pareto解集分布的均匀性和全局性.为避免决策者的主观性,采用模糊满意度最大的方法来确定最优的接入方案.最后,基于IEEE-33节点配电系统进行仿真验证,结果表明该方法在求解分布式光伏选址定容问题上的有效性和优越性.
Grid Connection Planning of Distributed Photovoltaic Based on Improved Multi-Objective Particle Swarm Optimization Algorithm
Considering the temporal characteristics of distribution network load and photovoltaic output,a siting and sizing model for distributed photovoltaic based on the standard deviation of voltage active power sensitivity is proposed.The proposed method determines a set of candidate nodes for distributed photovoltaic based on the time series of voltage active power sensitivity.The objective function,which includes investment cost,active power loss and voltage deviation,is solved by the modified multi-objective particle swarm optimization algorithm(IMOPSO).The algorithm guides the value of inertia weight based on the euclidean distance of fitness value between particles and the global optimal particle,to improve the global search capability of algorithms.Update the Pareto solution set through the density of particles,introduce the maxmin function to guide the selection of the global optimal value,and ensure the uniformity and global distribution of the Pareto solution set.To avoid the subjectivity of decision-makers,the method of maximizing fuzzy satisfaction is adopted to determine the optimal access plan.Finally,simulation verification is conducted based on the IEEE-33 node distribution system,and the results show the effectiveness and superiority of this method in solving the distributed photovoltaic siting and sizing determination problem.

distributed photovoltaicsiting and sizingmulti-objective particle swarm optimization algorithmtime series of voltage active power sensitivity

涂福荣、陈昆灿

展开 >

厦门海洋职业技术学院海洋机电学院,福建厦门 361100

厦门市智慧渔业重点实验室,福建厦门 361100

中国电建集团福建省电力勘测设计院有限公司,福建 福州 350003

分布式光伏 选址定容 多目标粒子群算法 电压有功时序灵敏度

2024

韶关学院学报
韶关学院

韶关学院学报

影响因子:0.28
ISSN:1007-5348
年,卷(期):2024.45(9)