首页|深度学习在主动脉影像自动分割中的研究进展

深度学习在主动脉影像自动分割中的研究进展

扫码查看
在医学图像处理领域,准确的图像分割对于主动脉疾病的诊断和治疗规划至关重要.深度学习技术,尤其是卷积神经网络近年来在医学图像分割任务中取得了显著的进展.本文基于深度学习模型应用于主动脉病变图像自动化分割的研究进行综述,总结了目前这些技术对于提高分割精度和效率方面的贡献,探讨了现有方法所面临的挑战和未来研究更多的可能性以及方向.
Research progress of deep learning in automatic segmentation of aortic images
In the field of medical image processing,accurate image segmentation is crucial for the diagnosis and treat-ment planning of aortic diseases.Deep learning techniques,especially convolutional neural networks,have made signifi-cant progress in medical image segmentation tasks in recent years.This article reviewed the research on the application of deep learning models to the automatic segmentation of aortic lesion images,summarized the contributions of these current techniques to improving the segmentation accuracy and efficiency,and discussed the challenges faced by existing methods and more possibilities and directions for future research.

Deep learningAortic image segmentationConvolutional neural networksAortic diseaseComputer vision

唐玉宁、潘天岳、董智慧、符伟国

展开 >

复旦大学附属中山医院血管外科,上海 200032

深度学习 主动脉图像分割 卷积神经网络 主动脉疾病 计算机视觉

2024

山东大学学报(医学版)
山东大学

山东大学学报(医学版)

CSTPCD北大核心
影响因子:0.841
ISSN:1671-7554
年,卷(期):2024.62(9)
  • 2