首页|基于高光谱结合机器学习对塑料瓶盖的快速分类研究

基于高光谱结合机器学习对塑料瓶盖的快速分类研究

扫码查看
为建立一种快速无损分类塑料瓶盖的方法,采用高光谱成像技术对48个塑料瓶盖样品进行检验.首先对原始光谱进行预处理,再分别采用主成分分析法、偏最小二乘-判别分析法和竞争自适应重加权采样法构建高光谱数据集,并对数据集分别使用支持向量机、多层感知机模型和卷积神经网络进行训练.结果表明:利用竞争自适应重加权特征提取构建的塑料瓶盖高光谱图像,在卷积神经网络中的测试集准确率达到了 100%.该方法方便快捷,对样品无损且用量少,为塑料瓶盖的分类提供了有力的支持.
Fast Identification of Plastic Bottle Caps Based on Hyperspectral Combined with Machine Learning
In order to establish a fast and non-destructive analytical method for plastic bottle cap inspection,a hyper-spectral imaging system was used to inspect 48 plastic bottle cap samples.Firstly,the original spectra were prepro-cessed,and then principal component analysis,partial least squares-discriminant analysis,and competitive adaptive re-weighted sampling were used to construct hyperspectral datasets.Support vector machines,multi-layer perceptron mod-els,and convolutional neural networks were used to train the datasets.The results show that the hyperspectral images of plastic bottle caps constructed using competitive adaptive reweighting sampling extraction achieved an accuracy of 100%in the test set of convolutional neural networks.This method is convenient,fast,non-destructive,and requires minimal usage,providing strong support for the classification of plastic bottle caps.

hyperspectral techniqueplastic bottle cappartial least squares-discriminant analysiscompetitive adap-tive reweighted samplingconvolutional neural network

周飞翔、姜红、钟方昊、周贯旭、刘业林

展开 >

中国人民公安大学侦查学院,北京 100038

万子健检测技术(北京)有限公司司法鉴定中心,北京 100141

江苏双利合谱科技有限公司,江苏无锡 214000

高光谱技术 塑料瓶盖 偏最小二乘-判别分析 竞争自适应重加权采样 卷积神经网络

食品药品安全防范山西省重点实验室开放课题

202204010931006

2024

上海塑料
上海塑料工程技术学会 上海市塑料制品工业研究所

上海塑料

影响因子:0.134
ISSN:1009-5993
年,卷(期):2024.52(2)