首页|基于粒子群优化BP神经网络对保险杠的XRF光谱分类研究

基于粒子群优化BP神经网络对保险杠的XRF光谱分类研究

扫码查看
建立了一种快速无损检验保险杠的分析方法.利用手持式X射线荧光光谱仪对50个保险杠样品进行了元素种类及含量的测量,根据K-means算法与轮廓系数、簇内误差平方和(SSE)的关系,确定最佳聚类数为5,即通过K-means聚类算法将50个样品分为5类.运用随机森林(RF)算法对样品的X射线荧光(XRF)光谱数据进行特征提取.根据RF算法提取的不同特征变量组合建立反向传播神经网络(BPNN)和粒子群(PSO)优化的BPNN(PSO-BPNN),结果表明:当输入变量为Ca-Pb-Sr 3种元素变量时,BPNN和PSO-BPNN均具有较好的分类效果,分类准确率分别为94%和98%;PSO-BPNN模型更适合此类样品的XRF光谱数据;XRF与PSO-BPNN相结合可以对保险杠实现有效分类.该方法简单、快速且无损样品,可为保险杠类物证鉴定提供科学依据.
Research on XRF Spectral Classification of Bumpers Based on Particle Swarm Optimization BP Neural Network
A rapid non-destructive testing method for bumper analysis has been established.50 bumper samples were measured for element types and contents using a handheld X-ray fluorescence spectrometer.Based on the relationship between K-means algorithm and contour coefficient,sum of squared errors within clusters(SSE),the optimal number of clusters was determined to be 5,which means that the 50 samples were divided into 5 categories using K-means cluste-ring algorithm.By using the random forest(RF)algorithm,features are extracted from the X-ray fluorescence(XRF)spectral data of samples.Based on the different feature variable combinations extracted by the RF algorithm,a back propagation neural network(BPNN)and a particle swarm optimization(PSO)optimized BPNN(PSO-BPNN)were es-tablished.The results show that when the input variables are Ca-Pb-Sr element variables,both BPNN and PSO-BPNN have good classification performance,with classification accuracies of 94%and 98%,respectively.The PSO-BPNN model is more suitable for XRF spectral data of such samples.The combination of XRF and PSO-BPNN can achieve ef-fective classification of bumpers.This method is simple,fast,and non-destructive for samples.It can provide scientific basis for the identification of bumper physical evidence.

X-ray fluorescence spectroscopybumperparticle swarm optimizationBP neural network

周贯旭、姜红、周飞翔、满吉

展开 >

中国人民公安大学侦查学院,北京 100038

万子健检测技术(北京)有限公司司法鉴定中心,北京 100141

北京华仪宏盛技术有限公司,北京 100024

X射线荧光光谱 保险杠 粒子群优化算法 BP神经网络

食品药品安全防范山西省重点实验室开放课题

202204010931006

2024

上海塑料
上海塑料工程技术学会 上海市塑料制品工业研究所

上海塑料

影响因子:0.134
ISSN:1009-5993
年,卷(期):2024.52(2)