首页|转移性去势抵抗性前列腺癌患者阿比特龙耐药的相关因素分析及预测模型构建

转移性去势抵抗性前列腺癌患者阿比特龙耐药的相关因素分析及预测模型构建

Influencing factors of abiraterone resistance in patients with metastatic castration resistant prostate cancer and construction of a prediction model

扫码查看
目的 分析转移性去势抵抗性前列腺癌(metastatic castration-resistant prostate cancer,mCRPC)患者行阿比特龙(abiraterone acetate,AA)治疗后出现耐药的相关因素,并构建预测模型.方法 回顾性分析2018年1月—2021年12月在同济大学附属同济医院接受AA治疗的81例mCRPC患者的临床资料.AA药物抵抗定义为AA治疗后患者发生疾病进展,包括前列腺特异性抗原(prostate specific antigen,PSA)及影像学进展.采用单因素及多因素Cox回归分析评估临床因素与AA耐药的相关性,采用Log-rank检验评估相关因素对患者疾病无进展生存期(progression free survival,PFS)的影响.根据多因素Cox回归分析系数建立预测模型,采用时间依赖ROC曲线及AUC评估模型的预测效能,并绘制列线图对AA耐药结局的风险进行预测.结果 AA治疗后患者中位随访时间9.9个月(5.9~17.9个月),发生AA耐药64例(79.0%),中位PFS为10.9个月(95%CI:5.7~16.0).多因素Cox回归分析显示患者体能状态(ECOG)评分(HR=2.121,P=0.019)、神经元特异性烯醇化酶(neuron specific enolase,NSE)(HR=1.029,P=0.040)、乳酸脱氢酶(lactic dehydrogenase,LDH)(HR=1.004,P=0.042)是 AA 耐药的独立危险因素.依据Cox回归分析结果建立预测模型:Model=-0.05×体质量指数(kg/m2)+0.529×淋巴结转移+0.213×转移瘤负荷+0.421×T 分期+0.029×NSE-0.004×血红蛋白+0.004×LDH-0.071 × 白蛋白+0.752× ECOG评分.时间依赖ROC曲线提示模型在AA治疗第6、12、24个月预测耐药结局的AUC分别为0.837、0.867、0.844,其 AUC 在第 6 个月显著高于 NSE(0.578)、LDH(0.656)、ECOG(0.673)(均 P<0.05),在第 12 个月显著高于 NSE(0.482)、ECOG(0.605)(均P<0.05),在第 24 个月显著高于 LDH(0.436)、ECOG(0.732)(均P<0.05).结论 mCRPC患者AA治疗前ECOG评分、血清NSE及LDH水平是AA耐药的独立危险因素.预测模型可在AA治疗后第6、12、24个月较好地预测耐药结局,其预测效能优于ECOG评分、血清NSE及LDH水平.
Objective To analyze the factors related to abiraterone acetate(AA)resistance in patients with metastatic castration-resistant prostate cancer(mCRPC)and to construct a prediction model.Methods Clinical data of 81 mCRPC patients who received AA treatment in Tongji University Affiliated Tongji Hospital from January 2018 to December 2021 were retrospectively analyzed.AA resistance was defined as disease progression after AA treatment,including PSA progression and radiographic progression.The risk factors of AA resistance were analyzed with univariate and multivariate Cox regression analyses.The related factors for progression free survival(PFS)were evaluated with Log-rank test.A predictive model was established based on the regression coefficients from the multivariate Cox regression analysis.The predictive performance of the model was evaluated using time-dependent ROC curve.Nomogram was used to assess the risk of resistance at different time points after AA treatment.Results The median follow-up time was 9.9 months(5.9-17.9),the median PFS was 10.9 months(95%CI:5.7-16.0),and AA resistance developed in 64 cases(79.0%).Multivariate Cox regression showed that ECOG score(HR=2.121,P=0.019),NSE(HR=1.029,P=0.040),and LDH level(HR=1.004,P=0.042)were independent risk factors for AA resistance.Based on the Cox regression results,a prediction model was established:-0.05 × BMI+0.529 × lymph node metastasis+0.213 × HVD+0.421 × T stage+0.029 × NSE-0.004 × HB+0.004 × LDH-0.071 × ALB+0.752 × ECOG.Time-dependent ROC analysis showed that the area under curve(AUC)of the model for predicting resistance to AA after 6,12,and 24 months of treatment was 0.837,0.867,and 0.844,respectively.The AUC at 6 months was significantly higher than that of NSE(0.578),LDH(0.656),and ECOG score(0.673)(all P<0.05).The AUC at 12 months was significantly higher than that of NSE(0.482)and ECOG score(0.605)(both P<0.05).The AUC at 24 months was significantly higher than that of LDH(0.436)and ECOG score(0.732)(both P<0.05).Conclusion The ECOG score,serum NSE level,and LDH level before treatment are independent risk factors for AA resistance.The established model in the study can effectively predict resistance to AA treatment at 6,12,and 24 months after treatment,and its predictive performance is superior to that of ECOG score,serum NSE level,and LDH level.

prostate cancercastration resistanceabirateronedrug resistanceprognostic model

迟永楠、杨涛、刘莺、王新安、黄盛松、吴登龙

展开 >

同济大学附属同济医院泌尿外科,上海 200065

前列腺癌 去势抵抗 阿比特龙 耐药 预测

上海市科学技术委员会自然科学基金

22ZR1456800

2024

同济大学学报(医学版)
同济大学

同济大学学报(医学版)

CSTPCD
影响因子:0.51
ISSN:1008-0392
年,卷(期):2024.45(1)
  • 36