首页|基于MRI征象建立预测肝细胞癌相关恶病质的列线图

基于MRI征象建立预测肝细胞癌相关恶病质的列线图

Development of a nomogram for predicting cachexia in hepatocellular carcinoma based on MRI features

扫码查看
目的 探讨治疗前MRI征象预测肝细胞癌(hepatocellular carcinoma,HCC)相关恶病质的价值.方法 回顾性分析399例HCC患者治疗前临床和MRI资料.所有患者均进行MRI平扫及增强检查,并随访MRI检查后6个月时患者的体重.根据恶病质诊断标准,将患者分为恶病质组和非恶病质组.按照随机抽样将所有病例分为训练集(n=279)和验证集(n=120).利用单因素和多因素逻辑回归分析筛选与HCC相关恶病质的变量,建立预测模型.采用受试者工作特征(receiver operating characteristic,ROC)曲线评估不同模型的预测效能,采用DeLong检验比较不同模型AUC值,选择最佳性能模型建立预测HCC相关恶病质列线图.结果 多因素逻辑回归分析显示,血清白蛋白<40 g/dL、血清甲胎蛋白>100 ng/mL、肿瘤直径>5 cm、门静脉癌栓、瘤内强化动脉和动脉期肿瘤边缘肝实质强化是预测肝细胞癌相关恶病质独立危险因素,临床-影像模型预测性能最好,训练集区分度AUC达0.843,验证集达0.854.结论 依据MRI征象建立列线图可较临床诊断提前6个月预测HCC相关恶病质,具有重要的临床治疗指导意义.
Objective To investigate the value of pre-treatment MRI features in predicting cachexia in hepatocellular carcinoma(HCC).Methods A retrospective analysis was conducted on 399 patients with hepatocellular carcinoma,recording their pre-treatment clinical and MRI data.All patients underwent MRI plain and enhanced scan,and their weight was followed up 6 months after the MRI examination.According to the diagnostic criteria for cachexia,patients were divided into cachexia group and non-cachexia group.They were randomly divided into the training set(n=279)and the validation set(n=120).Univariable and multivariable logistic regression analyses were used to screen variables associated with cachexia in hepatocellular carcinoma and to establish a predictive model.The receiver operating characteristic(ROC)curve was used to evaluate the predictive performance of different models.The DeLong test was used to compare the AUC values of different models,and the best-performing model was used to establish a predictive nomogram for cachexia in hepatocellular carcinoma.Results Multivariable logistic regression analysis showed that serum albumin<40 g/dL,serum alpha-fetoprotein>100 ng/mL,tumor diameter>5 cm,portal vein tumor thrombus,intratumoral arterial enhancement,and arterial phase peritumoral enhancement were independent predictors of cachexia in hepatocellular carcinoma.The clinical-imaging model showed the best predictive performance,with an AUC of 0.843 in the training set and 0.854 in the validation set.Conclusion The nomogram based on MRI features can predict cachexia in hepatocellular carcinoma 6 months earlier than clinical diagnosis,which has important clinical guidance significance.

hepatocellular carcinoma(HCC)cachexiaMRI featurenomogram

李信响、刘兵、江洋、赵宇飞、彭新桂

展开 >

东南大学附属中大医院放射科 南京 210009

中国科学技术大学附属第一医院(安徽省立医院)影像科 合肥 230001

肝细胞癌(HCC) 恶病质 MRI征象 列线图

2025

复旦学报(医学版)
复旦大学

复旦学报(医学版)

北大核心
影响因子:1.206
ISSN:1672-8467
年,卷(期):2025.52(1)