首页|基于改进的联邦UKF无人艇组合导航系统设计

基于改进的联邦UKF无人艇组合导航系统设计

扫码查看
针对无人艇在高海况下长航时,大幅度作业滤波精度较低的问题,提出一种基于联邦结构的无迹卡尔曼滤波(Unscented Kalman Filtering,UKF)算法,将其应用于自主研制的无人艇组合导航系统中.建立系统误差方程和量测方程;引入渐消因子、基于量测值与预测量测值差值的可变因子和自适应最优信息分配因子对联邦UKF算法进行改进,保持信息的强跟踪特性和组合导航系统的信息融合精度,得到全局最优估计值.开展湖试试验,验证该组合导航系统的有效性,结果表明该系统实时性、稳定性好,抗干扰能力强,能有效提高导航精度.该方法不仅能为无人艇作业提供安全保障,而且可供其他组合导航系统设计参考.
Design of Integrated Navigation System for Unmanned Surface Vehicle Based on Improved Federated UKF
An Unscented Kalman Filtering(UKF)algorithm based on the improved federated structure is proposed to address the problem of low filtering accuracy in large-scale operations of unmanned boats in the long voyages under high sea conditions,which is applied to a self-developed unmanned boat integrated navigation system.Systematic error equations and measurement equations are established.The federated UKF algorithm is improved by introducing the fading factor,the variable factor based on the difference between measured and predicted values,and the adaptive optimal information allocation factor to maintain strong information tracking and information fusion accuracy of the integrated navigation system,and to obtain the global optimal estimate.A lake trial was conducted to verify the effectiveness of the integrated navigation system,and the results showed that the system has good real-time performance,stability,and strong anti-interference ability,which effectively improves navigation accuracy.This method not only provides safety assurance for unmanned craft operation,but also serves as a reference for the design of other integrated navigation systems.

unmanned surface vehiclefederal structureimproved Unscented Kalman Filtering(UKF)algorithmintegrated navigation system

翁昱、曾庆军、李维、李昂、戴晓强

展开 >

江苏科技大学自动化学院, 江苏镇江 212100

江苏科技大学计算机学院, 江苏镇江 212100

无人艇 联邦结构 改进的无迹卡尔曼滤波(UKF)算法 组合导航系统

国家自然科学基金江苏省产业前瞻与共性关键技术项目

11574120BE2018103

2024

船舶与海洋工程
上海市造船工程学会

船舶与海洋工程

影响因子:0.592
ISSN:2095-4069
年,卷(期):2024.40(2)
  • 6