首页|基于改进VGG16网络的半监督石刻表层裂缝识别

基于改进VGG16网络的半监督石刻表层裂缝识别

扫码查看
针对如何快速准确地检测石刻表层裂缝问题,笔者建立一种改进的VGG16网络模型,将原本的3层全连接层改为2层全连接层,增加dropout正则化,并结合使用半监督学习算法,将深度学习应用于石刻表层裂缝的智能识别研究.为了检验改进后模型的性能与准确性,选用Unet、ResNet以及原模型进行比较,使用精确率、召回率和训练时间等对模型进行综合评估.改进后的VGG16网络模型精度达到93.6%,且训练时间较原模型减少了 18%,具有轻量化运算的优点,模型可以满足基本的表层裂缝识别需求,且具有较好的鲁棒性.
Semi supervised identification of surface cracks in stone carvings based on improved VGG16 network
In order to quickly and accurately detect the surface cracks in stone carvings,the authors establish an improved VGG16 network model,which changes the original three fully connected layers to two fully connected layers,adds dropout regularization,and combines it with the semi supervised learning algorithms to apply deep learning to intelligent recognition research of surface cracks in stone carvings.In order to test the performance and accuracy of the improved model,Unet,ResNet and the original models were selected for comparison.The improved VGG16 network model achieved an accuracy of 93.6%and the training time is reduced by 18%compared with the original models,which has the advantage of lightweight operation.The model can meet the basic needs of surface crack recognition and has good robustness.

stone carvingssurface crack identificationsemi supervised algorithmimproved VGG16 network

张英浩、冯晅、赵鹏飞、董泽君、周皓秋、张明贺、安娅菲、杨佳润、王宇恒、王刘磊

展开 >

吉林大学地球探测科学与技术学院,长春 130026

石刻 表层裂缝识别 半监督算法 改进VGG16网络

国家重点研发计划课题

2021YFC1523401

2024

世界地质
吉林大学 东北亚国际地学研究与教学中心

世界地质

CSTPCD
影响因子:0.769
ISSN:1004-5589
年,卷(期):2024.43(3)