首页|基于多特征融合结合深度学习模型的药材切片鉴别

基于多特征融合结合深度学习模型的药材切片鉴别

扫码查看
目的 针对现有复杂背景药材切片自动鉴别准确率较低的问题,实现复杂背景下药材切片图像的准确识别。方法 基于整理的藏药材切片图像数据集进行实验,分析切片的RGB、HOG、LBP特征,使用改进的HOG算法进行多特征融合,最后使深度学习网络对任务图像进行识别。结果 本文提出的多特征融合结合深度学习方法对32种复杂背景下藏药材切片的3610张图像识别准确率达到91。68%,同时该方法对川贝母、山楂及半夏等20种常见中药饮片的平均鉴别准确率达到98。00%,优于其他现有的复杂背景下的中药饮片识别方法,说明该方法对其他中药材鉴定也同样具有可行性,应用范围较广泛。结论 多特征融合能够较好地提取复杂背景下药材切片的区分特征,对于背景复杂且堆积遮挡严重的藏药材切片识别率较高,可有效应用于自然场景下的中药材、藏药材切片与其他中药饮片识别,具有较好的应用前景。
Recognition of Tibetan Medicinal Material Slices Based on Multi-Feature Fusion Combined with Deep Learning Model
Objective The objective of this study is to improve the accuracy of automatic identification in complex background herbal slice images.The goal is to achieve accurate recognition of herbal slice images in the presence of complex backgrounds.Methods The experiment was conducted on a collected and organized dataset of Tibetan herbal slice images.The RGB,HOG,and LBP features of the slices were analyzed.An improved HOG algorithm was used to fuse multiple features,and a deep learning network was utilized for image recognition.Results The proposed method of multi-feature fusion combined with deep learning achieved an identification accuracy of 91.68%on 3610 Tibetan herbal slice images with complex backgrounds.Furthermore,the average identification accuracy for 20 common traditional Chinese medicine slices,such as Chuan Beimu,Hawthorn,and Pinellia,reached 98.00%.This method outperformed existing methods for identifying herbal slices in complex backgrounds,indicating its feasibility and wide applicability for the identification of other traditional Chinese herbal medicines.Conclusion The fusion of multiple features effectively captures distinguishing characteristics of herbal slices in complex backgrounds.It exhibits high recognition rates for Tibetan herbal slices with complex and heavily occluded backgrounds,and can be successfully applied to the recognition of natural scene-based traditional Chinese herbal medicines and herbal slices.This approach shows promising prospects for practical applications.

Feature fusionDeep learningTibetan medicinal materialsImage recognitionMedicinal material slicesAttention mechanism

周丽媛、高红梅、赵启军、高定国

展开 >

西藏大学信息科学技术学院 拉萨 850000

藏文信息技术创新人才培养示范基地 拉萨 850000

四川大学计算机学院 成都 610065

特征融合 深度学习 藏药材 图像识别 药材切片 注意力机制

国家自然科学基金地区科学基金西藏大学研究生"高水平人才培养计划"项目

621660382020-GSP-S173

2024

世界科学技术-中医药现代化
中科院科技政策与管理科学研究所,中国高技术产业发展促进会

世界科学技术-中医药现代化

CSTPCD北大核心
影响因子:1.175
ISSN:1674-3849
年,卷(期):2024.26(1)
  • 23