首页|基于机器学习建立"益肾清利活血"法治疗的CKD4-5期患者透析时机预测模型

基于机器学习建立"益肾清利活血"法治疗的CKD4-5期患者透析时机预测模型

扫码查看
目的 借助机器学习方法构建CKD4-5期患者进入肾脏替代治疗的时间点预测模型,为临床治疗方案的选择提供指导。方法 采用回顾性队列研究,纳入2010年1月-2021年3月期间孙伟教授运用益肾清利活血法治疗的CKD5期的患者,收集患者CKD4-5期的临床资料,筛选人口统计学资料、实验室检査结果、中医症状、辨证分型以及中药使用情况等相关变量,以进入肾脏替代治疗为终点事件,采用线性回归模型联合随机森林模型对自变量(预测因子)进行三阶段降维,筛选有统计学意义(P<0。05)的变量,建立基于症状、方药、理化检查指标等多维度的多重线性预测模型,调整决定系数(Adjusted R-Square,Adjusted R2)和Bland-Altman图对模型进行评价。结果 从预测变量中筛选到5个预测因子,并构建多重线性模型方程为lnDay=5。058+0。031×白蛋白-0。004×肌酐+0。010×血红蛋白-0。412×使用积雪草-0。715×皮肤瘙痒;利用Bland-Altman图对预测值进行了评价,结果表明Bland-Altman图中的散点均较好的分布在差值的95%正常值范围内,预测值与实际值的一致性较好。结论 构建的多重线性预测模型,可用于辅助临床对于肾功能进展时长的预测,利于识别高危人群,为进入肾脏替代治疗前的方案选择提供参考。
Establishment of a Machine-Learning-Based Predaiction Model for the Timing of Dialysis in Patients with CKD Stage 4-5 Treated with the Method of"Yishen-qingli-Huoxue Therapy"
Objective We constructed a prediction model of the time point for CKD stage 4-5 patients to enter renal replacement therapy with the help of machine learning method,which can provide guidance for the selection of clinical treatment plan.Methods A retrospective cohort study was conducted to include patients with CKD stage 4-5 treated by Prof.Sun Wei with the"Yishen-qingli-Huoxue Therapy"from January 2010 to March 2021,Clinical data of patients with CKD stage 4-5 were collected,and relevant variables such as demographic data,laboratory test results,TCM symptoms,syndrome differentiation and use of Chinese medicine were screened.With renal replacement therapy as the end event,linear regression model combined with random forest model was used to reduce dimension of independent variables(predictors)in three stages.The variables with statistical significance(P<0.05)were screened,and a multi-linear prediction model was established based on symptoms,prescriptions,physical and chemical indexes,the model was evaluated by adjusted determination coefficient(Adjusted R-Square,Adjusted R2)and Bland-Altman plots.Results Five predictors were selected from the predictor variables and constructed with multiple linear model equation lnDay=5.058+0.031×albumin-0.004×creatinine+0.010×hemoglobin-0.412×using Centella-0.715×skin pruritus;the predicted value was evaluated using the Bland-Altman plot,showing that the scatter in the Bland-Altman plot was well distributed within the 95%normal value of the difference,and the consistency between the predicted value and the real value was good.Conclusion The multiple linear prediction model can be used to assist clinical prediction of the length of renal function progression,which is conducive to identify high-risk groups and provide reference for the selection of regimen before entering renal replacement therapy.

Timing of dialysisYishen Qingli Huoxue TherapyRandom forestPrediction model

孙琦、陶静、孙伟、王骁晓、王威

展开 >

南京市六合区中医院 南京 211500

江苏省中医院 南京 210029

透析时机 益肾清利活血 随机森林 预测模型

2024

世界科学技术-中医药现代化
中科院科技政策与管理科学研究所,中国高技术产业发展促进会

世界科学技术-中医药现代化

CSTPCD北大核心
影响因子:1.175
ISSN:1674-3849
年,卷(期):2024.26(7)