首页|基于ResNet的溃疡性结肠炎肠镜图像分类模型的建立及临床测试

基于ResNet的溃疡性结肠炎肠镜图像分类模型的建立及临床测试

扫码查看
目的 训练一个基于ResNet的溃疡性结肠炎肠镜图像自动识别及分类模型,并测试其准确性,以期协助医师提高溃疡性结肠炎的临床检出率与分类准确率。方法 从河北省中医院结肠镜中心回顾性搜集2018年1月-2023年10月的4000张结肠镜图像,根据Mayo内镜评分标准分成正常组,UC轻度组、中度组、重度组,每组图像各1000张。通过亮度调节、角度旋转等预处理后,将图像数量扩充至20000张,按照7∶2∶1的比例随机将数据集划分为训练集、验证集、测试集。将训练集和验证集输入ResNet模型学习及检验其稳定性,待全部训练结束后,通过测试集记录模型的准确率,制作精准回归曲线,评估模型的分类效果。结果 在测试集中,该模型对于溃疡性结肠炎不同程度的肠镜图像分类准确率为:正常组99。8%、轻度组98。8%、中度组95。6%、重度组97。8%。结论 ResNet识别及分类溃疡性结肠炎图像性能良好,准确率较高,可辅助医师对本病进行识别、分类等任务,有较为可靠的临床应用价值。
Establishment and Clinical Test of Automatic Image Recognition Model for Ulcerative Colitis Colonoscopy Based on ResNet
Objective To train an automatic recognition and classification model of ulcerative colitis colonoscopy image based on ResNet,and to test its accuracy,in order to help doctors improve the clinical detection rate and classification accuracy of ulcerative colitis.Methods A total of 4000 colonoscopy images were retrospectively collected from the Colonoscopy Center of Hebei Hospital of Traditional Chinese Medicine from January 2018 to October 2023,and were divided into normal group,mild group,moderate group and severe group according to Mayo endoscopic scoring criteria,with 1000 images for each group.After pre-processing such as brightness adjustment and Angle rotation,the number of images was expanded to 20,000,and the data set was randomly divided into training set,verification set and test set according to the ratio of 7∶2∶1.The training set and verification set are input into the ResNet model to learn and test its stability.After all training is completed,the accuracy of the model is recorded through the test set,and the accurate regression curve is made to evaluate the classification effect of the model.Results In the test set,the accuracy of classification of ulcerative colitis was 99.8%in normal group,98.8%in mild group,95.6%in moderate group and 97.8%in severe group.Conclusion ResNet has good performance in image recognition and classification of ulcerative colitis,can improve the clinical accuracy of ulcerative colitis,and can assist doctors to identify and classify the disease,which has a more reliable clinical application value.

Ulcerative colitisConvolutional neural networkClassification recognitionClinical application

刘岩生、于倩茹、张坤、徐伟超、白米楠、胡贺、王志成、梁诗悦、高梦琪、娄莹莹

展开 >

河北中医药大学研究生学院 石家庄 050200

河北科技大学 信息科学与工程学院 石家庄 050018

河北中医药大学第一附属医院 石家庄 050011

河北省中西医结合胃肠病研究重点实验室 石家庄 050011

展开 >

溃疡性结肠炎 卷积神经网络 分类识别 临床应用

2024

世界科学技术-中医药现代化
中科院科技政策与管理科学研究所,中国高技术产业发展促进会

世界科学技术-中医药现代化

CSTPCD北大核心
影响因子:1.175
ISSN:1674-3849
年,卷(期):2024.26(9)