首页|基于机器学习的真实世界健康人舌象与年龄及性别相关性研究

基于机器学习的真实世界健康人舌象与年龄及性别相关性研究

扫码查看
目的 借用真实世界健康人舌象数据验证舌象特征与年龄及性别的相关性.方法 采用人工智能图像采集技术和机器学习工具实现模型的建立、训练及验证.结果 ①人工智能实现了对中医舌诊资料的数据化与标准化,建立了中医舌诊数据库(n=56573).②高准确度的随机森林模型说明了舌象特征与性别、年龄的相关性.③进一步筛选出舌象特征在不同年龄段和性别之间的差异的关键因素.④训练、测试并验证了机器学习人工神经网络模型(训练集R2=0.8772,验证集R2=0.8715,测试集R2=0.8707,AUC=89.5%),具有良好的性能.结论 经机器学习验证在真实世界数据中随年龄的变化,舌象特征会随之改变.此外真实世界大样本量数据发现性别的差异会有不同的舌象特征.
Study on the Correlation Between Machine Learning-Based Tongue Features of Healthy Individuals in the Real World and Age and Gender
Objective Validate the correlation between tongue features and age and gender by utilizing real-world tongue image data from healthy individuals.Methods Establishing,training,and validating a model using artificial intelligence image acquisition techniques and machine learning tools.Results ①Artificial intelligence has achieved the digitization and standardization of Traditional Chinese Medicine tongue diagnosis data,establishing a database of Traditional Chinese Medicine tongue diagnosis(n=56573).②A highly accurate random forest model has demonstrated the correlation between tongue features and gender and age.③Further selection of key factors that show differences in tongue features between different age groups and genders.④Machine learning artificial neural network models were trained,tested,and validated(training set R2=0.8772,validation set R2=0.8715,test set R2=0.8707,AUC=89.5%),demonstrating excellent accuracy.Conclusion Machine learning validation using real-world data has confirmed that tongue features change with age.Additionally,analysis of large-scale real-world data has revealed that there are different tongue features associated with gender differences.

Real-world dataMachine learningTongue image and age relationshipTongue image and gender relationship

王吉庆、张蕾、徐世芬、宓轶群

展开 >

上海中医药大学附属市中医医院 上海 200071

真实世界数据 机器学习 舌象与年龄相关性 舌象与性别相关性

2024

世界科学技术-中医药现代化
中科院科技政策与管理科学研究所,中国高技术产业发展促进会

世界科学技术-中医药现代化

CSTPCD北大核心
影响因子:1.175
ISSN:1674-3849
年,卷(期):2024.26(11)