首页|基于图神经网络的中药聚类方法研究

基于图神经网络的中药聚类方法研究

扫码查看
目的 本研究提出了一种基于图神经网络的中药聚类方法(CHM-GCNK),旨在从生物分子网络层面发现潜在的中药配伍。方法 首先,收集中药、靶点(蛋白质)信息以及它们之间的相互作用关系,构建中药靶点网络。其次,采用图神经网络学习所构建的中药靶点网络,获取中药节点的嵌入表示。然后,利用Kmeans算法进行聚类。最后,采用非线性降维技术t-SNE可视化聚类结果。结果 应用CHM-GCNK、Node2Vec-Kmeans和SVD-Kmeans方法,以治疗肺癌的40个中药为例进行聚类,聚类结果为五个簇,聚类算法评价指标SS、DBI、CH结果显示CHM-GCNK优于其他两种方法,分别为0。4006、0。7631、59。0001。结论 CHM-GCNK聚类效果更好,可应用于中药配伍研究,进而为人工智能和多组学数据时代的中医药生物网络分析方法提供参考借鉴。
Research on Clustering Method for Chinese Herbal Medicine Based on Graph Neural Network
Objective This study proposes a Chinese Herbal Medicine(CHM)clustering method based on graph neural network(CHM-GCNK),aiming to discover potential compatibility of CHM at the biological network level.Methods Firstly,collect data of CHM,target,and their interactions,and construct a network of CHM and targets.Secondly,the graph neural network is used to learn the constructed network and obtain the embedded representation of CHM nodes.Then,use the Kmeans algorithm to clustering.Finally,use nonlinear dimensionality reduction technology t-SNE to visualize clustering results.Results The CHM-GCNK,Node2Vec-Kmeans,and SVD-Kmeans methods were applied to cluster 40 CHM for the treatment of lung cancer.The clustering results were five clusters,and CHM-GCNK was superior to the other two methods.The evaluation indicators SS,DBI,and CH showed results of 0.4006,0.7631,and 59.0001,respectively.Conclusion The clustering effect of CHM-GCNK is better and can be applied to the study of CHM compatibility,providing reference for the analysis methods of CHM biological networks in the era of artificial intelligence and multi omics data.

Graph neural networkProtein-Protein interaction networksMolecular biologyChinese herbal medicine clustering

何佳怡、谢佳东、胡晨骏、胡孔法

展开 >

南京中医药大学人工智能与信息技术学院 南京 210023

南京中医药大学中医药文献研究所 南京 210023

江苏省中医药防治肿瘤协同创新中心 南京 210023

图神经网络 蛋白质互作网络 分子生物学 中药聚类

2024

世界科学技术-中医药现代化
中科院科技政策与管理科学研究所,中国高技术产业发展促进会

世界科学技术-中医药现代化

CSTPCD北大核心
影响因子:1.175
ISSN:1674-3849
年,卷(期):2024.26(11)