首页|基于DOE设计及MOPSO算法的汽车滤清器外壳多目标优化分析

基于DOE设计及MOPSO算法的汽车滤清器外壳多目标优化分析

扫码查看
为了获取质量良好的汽车滤清器外壳,通过Moldlfow软件对汽车滤清器进行模流分析,并且以滤清器注塑成型过程的模具温度、熔体温度、保压压力以及冷却时间为研究变量,制件最终的翘曲变形量为研究目标,利用DOE设计获取实验样本,根据样本结果建立Kriging模型,最后通过MOPSO算法对最小制件翘曲变形量进行全局寻优,最终得到最佳的成型工艺参数组合.结果表明:当制件的模具温度为43℃、熔体温度为230℃、保压压力为33 MPa、冷却时间为15 s时,滤清器的翘曲变形量最小为0.620 0 mm,预测值为0.602 7 mm,两者之间误差为3.2%,较未优化前降低了1.242 0 mm,说明通过DOE设计以及MOPSO算法能够有效提升注塑制件成型质量.
Multi-Objective Optimization Analysis of Automotive Filter Shell Based on DOE Design and MOPSO Algorithm
In order to obtain a good quality automotive filter shell,the automobile filter was analyzed by Moldlfow software,the mold temperature,melt temperature,holding pressure and cooling time of the filter injection molding process were taken as the research variables,and the final warpage deformation of the product was taken as the research target.The experimental samples were obtained by DOE design,and the Kriging model was established according to the sample results.Finally,the minimum warpage deformation of the parts was globally optimized by MOPSO algorithm,and a set of optimal molding process parameters were obtained.The results show that when the mold temperature of the parts is 43℃,the melt temperature is 230℃,the holding pressure is 33 MPa,and the cooling time is 15 s,the warpage deformation of the filter is 0.620 0 mm,and the predicted value is 0.602 7 mm.The error between the two is 3.2%,and it is 1.242 0 mm lower than before optimization,and the molding quality of injection molding parts can be effectively improved by DOE design and MOPSO algorithm.

Filter shellDOE designKriging modelMOPSO algorithmProcess optimization

黄关山、王新艳

展开 >

珠海城市职业技术学院新能源学院,广东珠海 519090

天津市职业大学,天津 300000

滤清器外壳 DOE设计 Kriging模型 MOPSO算法 工艺优化

广东省珠海城市职业技术学院质量工程项目广东省珠海城市职业技术学院科研项目

ZJLS20230308KY20231216

2024

塑料科技
大连塑料研究所有限公司 深圳市塑胶行业协会

塑料科技

CSTPCD北大核心
影响因子:0.553
ISSN:1005-3360
年,卷(期):2024.52(8)