首页|一类二阶迭代函数方程有界光滑解的Lipschitz依赖性

一类二阶迭代函数方程有界光滑解的Lipschitz依赖性

扫码查看
为了研究一类二阶迭代函数方程的C1 有界光滑解在C1 上确界距离下对已知函数的Lipschitz依赖性,对已知函数的导数施加了Lipschitz条件,并引入新的度量,此度量代表原函数与导函数之间的关系.根据给出Lipschitz依赖性推导过程的相关引理,对其进行了证明,并运用引理计算迭代函数方程光滑解之间的距离,从而得出对已知函数的Lipschitz依赖性.
Lipschitz Dependence of Bounded Smooth Solutions for a Class of Second Order Iterative Function Equations
In order to study the Lipschitz dependence of C1 bounded smooth solutions of a class of second-order iterated functional equations on known functions at a definite bounded distance on C1,a Lipschitz condition is imposed on the derivatives of the known functions and a new metric is introduced,which represents the relationship between the original function and the derivative function.The Lipschitz dependence on the known function is proved on the basis of the relevant lemmas giving the derivation of the Lipschitz dependence,and the lemmas are applied to compute the distance between smooth solutions of the iterated functional equation.

a class of second order iterative functional equationcontinuous functionsmooth solutionLipschitz dependency

石维维、薛秋梅

展开 >

重庆师范大学数学科学学院,重庆沙坪坝 401331

一类二阶迭代函数方程 连续函数 光滑解 Lipschitz依赖性

重庆师范大学博士启动基金重庆市教委科技项目

20XLB033KJQN202300540

2024

商洛学院学报
商洛学院

商洛学院学报

影响因子:0.412
ISSN:1674-0033
年,卷(期):2024.38(2)
  • 9