首页|基于卷积神经网络的脑出血分类识别算法研究

基于卷积神经网络的脑出血分类识别算法研究

扫码查看
脑出血诊断主要依赖于影像学检查,针对传统人工阅片识别效率不高、受限于医师与设备技术,以及难以实现大规模诊断等问题,提出了一种基于卷积神经网络的脑出血识别和分类方法.采集了 5 000 份脑CT影像,对其进行去噪、归一化、裁剪等预处理,建立了脑CT影像的LeNet-5 模型,进行特征提取并实现分类.结果表明,LeNet-5 模型在测试集上的准确率达到了 95.8%,能够提供更准确、更高效的诊断结果,可为临床诊断和治疗提供有力支持.
A Study on Classification and Recognition Algorithm for Cerebral Hemorrhage Based on Convolutional Neural Network
The diagnosis of cerebral hemorrhage mainly relies on the imaging examination.The traditional manual way of the CT images analysis has many disadvantages,such as low identification efficiency,limited by doctors and equipment technology,and the difficult to achieve large-scale diagnosis.a new method of cerebral hemorrhage classification and recognition is proposed,based on convolutional neural network to overcome these difficulties.5 000 sets of brain CT images were collected,and the brain CT images were denoised,normalized and trimmed,and the LeNet-5 model of brain CT images was established for feature extraction and classification.The results show that the accuracy of the LeNet-5 model of cerebral hemorrhage recognition reached 95.8%on the test set,and it can provide more accurate and efficient diagnostic results,which can provide excellent support for clinical diagnosis and treatment.

CT imageconvolutional neural networkcerebral hemorrhagerecognition

杨琳、安旭、菜涪全

展开 >

商洛学院电子信息与电气工程学院/商洛市人工智能研究中心,陕西商洛 726000

CT影像 卷积神经网络 脑出血 识别

陕西省教育厅专项科研项目

20JK0613

2024

商洛学院学报
商洛学院

商洛学院学报

影响因子:0.412
ISSN:1674-0033
年,卷(期):2024.38(2)
  • 16