首页|R3中一类带有凹凸非线性项的Schr?dinger-Kirchhoff方程的无穷多解

R3中一类带有凹凸非线性项的Schr?dinger-Kirchhoff方程的无穷多解

扫码查看
研究一类带有凹凸非线性项的Schrödinger-Kirchhoff方程,其中位势函数不必满足强制性条件,凹项满足次线性增长性条件,并且凸项在无穷远处满足超三次线性增长性条件和在原点处满足超线性增长性条件.利用Bartsch的喷泉定理证明了对任意的μ∈R,凹凸非线性项的Schrödinger-Kirchhoff方程都存在无穷多个高能量解,丰富和推广了已有的结论.
Infinitely Many Solutions for Schr?dinger-Kirchhoff Equation with Concave-convex Nonlinearities in R3
A class of Schrödinger-Kirchhoff type equations with concave-convex nonlinearity in abstract form is studied,where the potential is not coercive,the concave term is of sublinear growth,the convex term satisfies the 3-superlinear growth condition at infinity and the superlinear growth condition at the origin.By Fountain theorem,we prove that,for all μ∈R,the Schrödinger-Kirchhoff type equations with concave-convex nonlinearity possesses infinitely many high-energy solutions,which improves and generalizes some known results in the literature.

Schrödinger-Kirchhoff equationconcave-convex nonlinearitiesFountain Theoreminfinitely many solutions

赵莉、叶一蔚

展开 >

重庆师范大学数学科学学院,重庆沙坪坝 401331

Schrödinger-Kirchhoff方程 凹凸非线性项 喷泉定理 无穷多解

国家自然科学基金项目

12171062

2024

商洛学院学报
商洛学院

商洛学院学报

影响因子:0.412
ISSN:1674-0033
年,卷(期):2024.38(4)