首页|Engel连分数展式中数字序列的增长速度

Engel连分数展式中数字序列的增长速度

扫码查看
对任意的实数x ∈[0,1],设x=[b1(x),b2(x),…]为其Engel连分数展式.为探究Engel连分数展式中数字序列的增长速度问题.研究了 Engel连分数展式中lnbn(x)以线性速度增长时相关例外集 E(α,β)={x ∈[0,1):liminf n→∞ lnbn(x)/n=α,limsup n→∞ lnbn(x)/n=β}的 Hausdorff 维数,通过构建例外集的Cantor子集并利用质量分布原理,给出了对任意的0≤α≤β≤∞,例外集E(α,β)都是满维的结果,该结果补充了 Engel连分数展式中数字序列增长速度问题的研究.
The Growth Rate of Number Sequence in Engel Continued Fraction
For any real number x ∈[0,1),let x=[b1(x),b2(x),…]be its Engel continued fraction.To explore the growth rate of number sequence in Engel continued fraction expansion,this study mainly describes the Hausdorff dimension of the relevant exception set E(α,β)={x ∈[0,1):liminf n→∞ lnbn(x)/n=α,limsup n→∞ lnbn(x)/n=β}when lnbn(x)in Engel continued fractional expansion grows at a linear rate.By constructing the Cantor subset of the exception set and using the mass distribution principle,the result that the exception set E(α,β)is full dimension for any0≤α≤β≤∞is given.This result complements the research on the growth rate of number sequences in Engel continued fraction expansion.

Engel continued fractionsHausdorff dimensionexceptional set

胡林

展开 >

重庆师范大学数学科学学院,重庆沙坪坝 401331

Engel连分数展式 Hausdorff维数 例外集

2024

商洛学院学报
商洛学院

商洛学院学报

影响因子:0.412
ISSN:1674-0033
年,卷(期):2024.38(6)