首页|毒蘑菇鉴别技术研究进展

毒蘑菇鉴别技术研究进展

扫码查看
大型真菌是地球上宝贵的生物资源,尤其是食药用价值丰富、生态功能显著的种类.毒蘑菇既是大型真菌资源的重要组成部分,也是限制野生经济真菌开发利用的关键阻碍.因此,无论是真菌分类的科学研究还是毒蘑菇中毒防治的公众科普教育,系统开展毒蘑菇鉴别技术研究和成分安全性检测都尤为重要.本文从毒蘑菇鉴别方法、毒蘑菇中毒类型及常见种类、蘑菇毒素与中毒机制、毒素检测技术等方面对国内外近几十年,有关毒蘑菇鉴别技术的研究现状、最新成果和发展趋势进行了综述,并基于互联网大数据、智能图像识别和化学反应融合发展等,对未来毒蘑菇快速检测试剂盒的研发及应用进行了展望,旨为毒蘑菇识别与中毒防治科学研究及科普教育提供系统性理论依据和参考.
Progress in identification technology of poisonous mushroom
Macrofungi have been regarded as valuable biological resources on earth,especially for species with edible and medicinal values and remarkable ecological functions.Poisonous mushrooms are not only an important component of macrofungal resources,but also huge obstacles and challenges for the exploitation and utilization of wild economic fungi.Therefore,whether it is for the scientific research of fungal taxonomy or the popular science education of mushroom poisoning prevention,it is crucial adjective to carry out systematic research on poisonous mushroom identification and toxin detection.This paper briefly reviewed the identification methods,common types,species,toxins,poisoning mechanism,detection technology of poisonous mushroom,emphasized the research actuality,latest achievements and development tendency of poisonous mushroom identification in recent decades,and prospected the future development of the rapid assay kit for poisonous mushroom based on internet technology,big data,artificial intelligence,digital image acquisition system,and chemotaxonomy,which is aiming to provide theoretical basis and reference of the scientific research and popular science education for poisonous mushroom identification,poisoning prevention and treatment.

macrofungipoisonous mushroomtoxin constituentspoisoning symptomstoxic mechanismsidentification methodsdetection techniques

高帆、谭廷鸿、孙琰妮、吴春芳、吴瑶、张歌、杨红、杨传东、康公平

展开 >

铜仁学院农林工程与规划学院,铜仁 554300

贵州省梵净山地区生物多样性保护与利用重点实验室,铜仁 554300

贵州省铜仁第一中学,铜仁 554300

湖南人文科技学院,农业与生物技术学院,娄底 417000

展开 >

大型真菌 毒蘑菇 毒素成分 中毒症状 中毒机制 鉴别方法 检测技术

国家自然科学基金国家自然科学基金贵州毒菌鉴别关键技术研究项目贵州省菌物资源普查及创新利用项目

3190027132160086黔科合支撑[2020]1Y065号黔科合支撑[2019]2451号

2024

食品安全质量检测学报
北京市电子产品质量检测中心 北京方略信息科技有限公司

食品安全质量检测学报

CSTPCD
影响因子:0.73
ISSN:2095-0381
年,卷(期):2024.15(9)
  • 68