首页|响应面-主成分分析法优化鲜湿米线配方

响应面-主成分分析法优化鲜湿米线配方

扫码查看
为研制一款兼具功能性和食用品质的杂粮鲜湿米线,此试验以籼米、鹰嘴豆(Cicer arietinum L.)和燕麦米(Avena sativa L.)为主要原料,食盐、黄原胶为品质改良剂,利用单因素试验和Box-Behnken试验设计,并结合主成分分析法优化了鲜湿米线配方.结果表明,前5个主成分累计贡献率达到89.733%,能够比较全面反映米线综合指标信息.利用主成分分析法得到的规范化综合得分建立响应面回归模型方差分析,拟合度较好(P=0.000 12,R2=0.946 0),预测的最优配方条件为鹰嘴豆燕麦米添加比例2∶5、食盐添加量3%、黄原胶添加量0.5%,在该条件下米线规范化综合得分为0.957 3,与理论综合评分没有显著差异(P>0.05).此研究为功能性食品多指标开发提供一定参考.
Optimization of Fresh Wet Rice Noodles by Response Surface Methodology and Principal Component Analysis
In order to develop a mixed grain fresh and wet rice noodle with both functionality and edible quality,this experiment used indica rice,chickpea(Cicer arietinum L.),and oat rice(Avena sativa L.)as the main raw materials,with salt and xanthan gum as quality improvers.The fresh and wet rice noodle formula was optimized using single factor test and Box Behnken experimental designs,combined with principal component analysis.The results showed that the cumulative contribution rate of the first five principal components reached 89.733%,which could comprehensively reflect the comprehensive indicator information of rice noodles.The response surface regression model established using the standardized comprehensive score obtained by principal component analysis showed a good fit(P=0.000 12,R2=0.946 0),and the optimal formula conditions were predicted as follows:The addition ratio of chickpea and oat rice was 2∶5,the addition amount of salt was 3%,and the addition amount of xanthan gum was 0.5%.Under these conditions,the standardized comprehensive score of rice noodles was 0.957 3,which was not significantly different from the theoretical comprehensive score(P>0.05).This study provided a certain reference for the development of multiple indicators of functional foods.

rice noodleprincipal component analysisresponse surface regression modelformulamultiple indicators

宋昊、黄涵年

展开 >

浙江经贸职业技术学院应用工程学院(杭州 310018)

米线 主成分分析 响应面回归模型 配方 多指标

2024

食品工业
上海市食品工业研究所

食品工业

影响因子:0.47
ISSN:1004-471X
年,卷(期):2024.45(9)